www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Bild (f)
Bild (f) < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild (f): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Fr 05.06.2009
Autor: aga88

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo! Ich stehe nun kurz vor meiner Klausur zur Linearen Algebra. Beim Lernen bin ich aber auf das Thema Bild und Kern gestossen. Wie man Kern berechnet weiß ich. Nur erschließt sich für mich das Bild überhaupt nicht.

Die Definition Bild (A)= [mm] \{Ax | x im Definitionsbereich} [/mm] sagt mir überhaupt nix.

Kann mir bitte jemand Schritt für Schritt schreiben was zu tun ist? Das hatte ja auch etwas mit Erzeugendensystem gemeinsam. Aber selbst das wusste ich nicht, wie ich das anwenden sollte.

Bin für jede Hilfe dankbar.

LG

        
Bezug
Bild (f): Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Fr 05.06.2009
Autor: angela.h.b.


> Die Definition Bild (A)= [mm]\{Ax | x im Definitionsbereich}[/mm]
> sagt mir überhaupt nix.

Hallo,

im Bild sind alle die Vektoren,  die Du erhältst, wenn Du die Matrix A mit jeden erlaubten Vektor x multiplizierst.

Du kannst zeigen, daß das Bild wieder ein VR ist.

> Kann mir bitte jemand Schritt für Schritt schreiben was zu
> tun ist? Das hatte ja auch etwas mit Erzeugendensystem
> gemeinsam. Aber selbst das wusste ich nicht, wie ich das
> anwenden sollte.

Das Bild einer Matrix ist der Raum, der von den Spaltenvektoren erzeugt wird.

Interessieren tut man sich meist für zweierlei: Dimension und Basis.

Bring hierfür die Matrix auf Zeilenstufenform.

Der Rang ist die Dimension des Bildes.

Die Basis findest Du so:

schau, in welchen Spalten in der ZSF die führenden Elemente der Nichtnullzeilen stehen.

Die entsprechenden Spalten der ursprünglichen Matrix bilden eine Basis des Bildes.


Bei Rckfragen poste btte eine konkrete Matrix und ihre ZSF mit.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de