www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Bild und Kern einer Matrix
Bild und Kern einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild und Kern einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 Mi 10.11.2010
Autor: Big_Head78

Aufgabe
Seien K ein Korper und m; n [mm] \ge [/mm] 1 naturliche Zahlen. Sei A eine m [mm] \times [/mm] n-Matrix mit
Eintragen in K. Zeige, dass der Kern und das Bild von A Teilraume des [mm] K^n [/mm] bzw. [mm] K^m [/mm]
sind.


Der Kern beschreibt alle Lösungen des LGS A*x=0
denn: Kern(A) ={v [mm] \in [/mm] V | Av = 0}
Und das Bild von A sind doch alle Ergebnisse der Gleichung A*x=c


Stimmen diese beiden Aussagen?

Und was ist dann it [mm] K^n [/mm] bzw [mm] K^m [/mm] gemeint?
Ich weiss nicht wirklich, was ich machen muss. Ein wenig Hilfe würde mich freuen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Bild und Kern einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Mi 10.11.2010
Autor: Teufel

Hi!

Wenn K ein Körper ist, dann sind [mm] K^n [/mm] und [mm] K^m [/mm] Vektorräume über diesem Körper. z.B. ist [mm] \IR [/mm] ein Körper und [mm] \IR^3 [/mm] ist ein vektorraum über [mm] \IR. [/mm]
Wenn du nun zeigen sollst, dass eine Menge U ein Unterraum (Teilraum) eines Vektorraums ist, dann musst du 3 Sachen prüfen:

(i) $0 [mm] \in [/mm] U$
(ii) $v, w [mm] \in [/mm] U [mm] \Rightarrow [/mm] v+w [mm] \in [/mm] U$
(iii) [mm] $\lambda \in [/mm] K, v [mm] \in [/mm] U [mm] \Rightarrow \lambda*v \in [/mm] U$

Und ja, die Aussagen stimmen!


Bezug
                
Bezug
Bild und Kern einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Mi 10.11.2010
Autor: Big_Head78

Genau, aber dafür muss ich ja zuerst Bild und Kern bestimmen, oder?

An dem Kern versuche ich mich gerade:

[mm] \pmat{ a_{1,1} & ...& a_{1,n} \\ ... & ... & ... \\ a_{m,1} & ... & a{m,n} } [/mm] *x=0

Leider ist das ja ein Ausdruck der dann sehr übersichtlich wird.
Wie mache ich das denn am besten?
Kann es sein, dass für m [mm] \ge [/mm] n es nur die triviale Lösung 0 gibt? Es sind ja mehr Zeilen als Spalten, von daher ist es doch eindeutig lösbar, und wenn ich mir vorstelle, dass ich auf der einen Seite einen Nullvektor habe, der sich bei Umformungen nicht verändert, wird das dann auch die Lösung sein.
Problematisch ist dann der andere Fall.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Bezug
                        
Bezug
Bild und Kern einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Mi 10.11.2010
Autor: Teufel

Nein, du musst nichts konkretes bestimmen!

(i) zeigst du, indem du einfach v=0 als Vektor einsetzt und dann siehst, dass Av=0 ist.

Für (ii), nimm einfach an, dass du schon 2 Vektoren v, w hast, für die gilt:
Av=0 und Aw=0. Dann musst du zeigen, dass auch A(v+w)=0 ist. Aber aufgrund der Rechenregeln für Matrizen folgt das ja direkt, denn sind Av=0, Aw=0, dann ist auch Av+Aw=0 [mm] \gdw [/mm] A(v+w)=0.

So kannst du auch (iii) zeigen.

Bezug
                                
Bezug
Bild und Kern einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Mi 10.11.2010
Autor: Big_Head78

Da bin ich auch schon angekommmen, aber ich gehe davon aus w,v [mm] \in [/mm] Kern(A), dann ist auch w+v [mm] \in [/mm] Kern(A). Ich versteh dann aber nicht wie das mit [mm] K^m [/mm] bzw [mm] K^n [/mm] gemeint

Bezug
                                        
Bezug
Bild und Kern einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Mi 10.11.2010
Autor: Teufel

[mm] K^m [/mm] ist z.B. nur ein Tupel, bestehend aus m Einträgen aus K.
z.B. sind die Vektoren im [mm] \IR^3 [/mm] auch von der Form [mm] (x_1, x_2, x_3) [/mm] mit [mm] x_i\in\IR, [/mm] i=1,2,3.

Denn Matrizen kannst du ja (neben Skalaren und anderen Matrizen) nur mit Zeilen- oder Spaltenvektoren multiplizieren.

Bezug
                                                
Bezug
Bild und Kern einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Mi 10.11.2010
Autor: Big_Head78

Ok, dann hab ich das verstanden, vielen Dank!

Bezug
                                                
Bezug
Bild und Kern einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Mi 10.11.2010
Autor: Big_Head78

Ich habe das jetzt noch für das Bild versucht:

Bild(A)= [mm] \{ r_{1} * \vektor{a_{11} \\ a_{m1}} +...+ r_{n} * \vektor{a_{1n} \\ a_{mn}} , r_{i} \in K \} [/mm]

1. sei [mm] r_{1}=...=r_{n} [/mm] =0 [mm] \Rightarrow [/mm] Bild(0) = 0 [mm] \in [/mm] Bild(A)

2. seien v,w [mm] \in [/mm] Bild (A)
[mm] r_{1} [/mm] * [mm] \vektor{a_{11} \\ a_{m1}} [/mm] +...+ [mm] r_{n} [/mm] * [mm] \vektor{a_{1n} \\ a_{mn}} [/mm]  +  [mm] t_{1} [/mm] * [mm] \vektor{a_{11} \\ a_{m1}} [/mm] +...+ [mm] t_{n} [/mm] * [mm] \vektor{a_{1n} \\ a_{mn}} [/mm]

[mm] v+w=(r_{1}+ t_{1}) [/mm] * [mm] \vektor{a_{11} \\ a_{m1}} [/mm] +...+ [mm] (r_{n}+t_{n}) [/mm] * [mm] \vektor{a_{1n} \\ a_{mn}} [/mm] , [mm] r_{i} [/mm] + [mm] t_{i} \in [/mm] K [mm] \Rightarrow [/mm] v+w [mm] \in [/mm] Bild(A)


3. so ähnlich wie 2. nur das hier [mm] \lambda *r_{i} \in [/mm] K und somit auch [mm] \lambda [/mm] * v [mm] \in [/mm] Bild(A)

Richtig so?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Bezug
                                                        
Bezug
Bild und Kern einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Mi 10.11.2010
Autor: Teufel

Hmm, also mit deiner Schreibweise komme ich jetzt irgendwie nicht zurecht. Du brauchst auch nicht irgendwelche Spaltenvektoren einführen.

(i) 0 [mm] \in [/mm] Bild(A), weil A*0=0.

(ii) Seien v, w [mm] \in [/mm] Bild(A). Dann gibt es ein a mit A*a=v und ein b mit A*b=w.
Dann ist A*(a+b)=A*a+A*b=v+w [mm] \Rightarrow [/mm] v+w [mm] \in [/mm] Bild(A).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de