www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Bild und Urbild
Bild und Urbild < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild und Urbild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Di 19.04.2011
Autor: noname2k

Hallo,
ich hab ein Problem bei folgender Aufgabe.
Sei $ [mm] f:\IR\to\IR, [/mm] x [mm] \mapsto x^2 [/mm] $

Jetzt soll ich dazu ein paar Mengen angeben. Hier sind meine Lösungen wenn es in [mm] \IN [/mm] ist aber ich weiß nicht wie die Schreibweise aussieht wenn es [mm] \IR [/mm] liegt.

$ im f = [mm] \{0,1,4,9,16,...\} [/mm] $

$ [mm] f^{-1}(\{9,16\})= \{-4,-3,3,4\} [/mm] $

$ [mm] f^{-1}(\{-4\})=\emptyset [/mm] $

$ [mm] f(\{-4\})=\{16\} [/mm] $

$ [mm] f^{-1}([\bruch{-1}{4},2]) [/mm] $

$ [mm] f([\bruch{-1}{4},2]) [/mm] $

Bei den letzten beiden weiß ich die Antwort nicht weil ich nicht genau weiß wie ich die eckigen Klammern zu deuten habe.
Sind die anderen Antworten soweit für [mm] \IN [/mm] schonmal korrekt?

Ich danke schonmal für Tipps.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bild und Urbild: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Di 19.04.2011
Autor: Cassipaya


> Hallo,
>  ich hab ein Problem bei folgender Aufgabe.
>  Sei [mm]f:\IR\to\IR, x \mapsto x^2[/mm]
>  
> Jetzt soll ich dazu ein paar Mengen angeben. Hier sind
> meine Lösungen wenn es in [mm]\IN[/mm] ist aber ich weiß nicht wie
> die Schreibweise aussieht wenn es [mm]\IR[/mm] liegt.

Hi, du musst dir überlegen, was mit Zahlen wie Pi oder e oder Brüchen oder -1,298378453 oder [mm]\wurzel{r}[/mm] geschieht. Deshalb stimmt das erste bei dir nicht.

>  
> [mm]im f = \{0,1,4,9,16,...\}[/mm] falsch
>  
> [mm]f^{-1}(\{9,16\})= \{-4,-3,3,4\}[/mm] richtig
>  
> [mm]f^{-1}(\{-4\})=\emptyset[/mm] richtig
>  
> [mm]f(\{-4\})=\{16\}[/mm] richtig
>  
> [mm]f^{-1}([\bruch{-1}{4},2])[/mm] das sind Intervalle und zwar geschlossene, dh 2 gehört auch noch rein und liegt nicht ausserhalb. Da kommt wieder das selbe ins Spiel wie oben, du musst dir überlegen, wohin werden alle Zahlen abgebildet, die ich aus diesem Intervall in die Funktion füttern könnte. Am besten versuchst du es zu zeichnen. Wähle einfach ein paar offensichtliche Punkte, wie Randpkte, 0 und 1 etc.
>  
> [mm]f([\bruch{-1}{4},2])[/mm]
>  
> Bei den letzten beiden weiß ich die Antwort nicht weil ich
> nicht genau weiß wie ich die eckigen Klammern zu deuten
> habe.
>  Sind die anderen Antworten soweit für [mm]\IN[/mm] schonmal
> korrekt? Die Frage ist nicht für N gestellt, deshalb irrelevant...
>  
> Ich danke schonmal für Tipps.
>  
>

Gruss Cassy

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Bild und Urbild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Di 19.04.2011
Autor: noname2k


>  >  
> > [mm]f^{-1}([\bruch{-1}{4},2])[/mm]

Die Funktion beginnt erst bei 0. Deshalb gibt es zu [mm] \bruch{-1}{4} [/mm] keinen Wert. Ist die Antwort dann nur [mm] \{4\} [/mm] oder muss ich es als Intervall angeben [mm] \{[0,4]\} [/mm] ?

>  >  
> > [mm]f([\bruch{-1}{4},2])[/mm]

Selbe Frage wie oben, [mm] \{\bruch{1}{16},4\} [/mm] oder [mm] \{[\bruch{1}{16},4]\} [/mm] oder gehe ich da noch komplett falsch ran?

>  >  
> > [mm]im f = \{0,1,4,9,16,...\}[/mm] falsch

Wurzeln, Pi etc. müssten ja auch in [mm] \IR [/mm] liegen. Meinst du damit das ich diese auch mit aufzählen muss?


Bezug
                        
Bezug
Bild und Urbild: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mi 20.04.2011
Autor: fred97

1. Für a, b [mm] \in \IR [/mm] mit a<b ist $[a,b]= [mm] \{x \in \IR: a \le x \le b \}$ [/mm]


2. [mm] $f^{-1}([ \bruch{-1}{4},2])= \{x \in \IR: x^2 \in [ \bruch{-1}{4},2] \}= \{x \in \IR: x^2 \in [0,2] \}=[-\wurzel{2},\wurzel{2}] [/mm] $

3.  $f([ [mm] \bruch{-1}{4},2])=\{x^2: x \in [ \bruch{-1}{4},2]\}= [/mm] [ [mm] \bruch{1}{16},4]$ [/mm]

Edit: tobit hat mich auf einen Fehler hingewiesen (https://matheraum.de/read?i=787112)

Es ist natürlich: $f([ [mm] \bruch{-1}{4},2])=\{x^2: x \in [ \bruch{-1}{4},2]\}= [/mm] [0,4]$

FRED

Bezug
                                
Bezug
Bild und Urbild: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 15:29 Mi 20.04.2011
Autor: tobit09

Hallo Fred,

> 3.  [mm]f([ \bruch{-1}{4},2])=\{x^2: x \in [ \bruch{-1}{4},2]\}= [ \bruch{1}{16},4][/mm]

Hier muss es $[0,4]$ statt [mm] $[\bruch{1}{16},4]$ [/mm] heißen.

Viele Grüße
Tobias

Bezug
                                
Bezug
Bild und Urbild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Mi 20.04.2011
Autor: fred97

Hallo tobit,

Du hast natürlich recht. Ich habs editiert.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de