Bildbereich bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:01 Mo 26.04.2010 | Autor: | kegel53 |
Aufgabe | Sei [mm] \Omega:=\{0,1\}^n, S:=\sum_{i=1}^{n} X_i [/mm] sowie die kanonische Projektion [mm] X_i: \Omega\rightarrow \{0,1\} [/mm] für alle [mm] i\in\{1,...,n\} [/mm] vorgegeben.
Bestimmen Sie den Bildbereich [mm] S[\Omega]. [/mm] |
Tag Leute,
also S ist ja in üblicher Weise als Summe von Funktionen definiert.
Es gilt also: [mm] S[\Omega]=(\sum_{i=1}^{n} X_i)[\Omega]=\sum_{i=1}^{n} X_i[\Omega]=\sum_{i=1}^{n} \{0,1\}=\{0,...n\}
[/mm]
Ist das so in Ordnung??
Oder wie könnte man das besser aufschreiben?
Besten Dank schon mal.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:12 Mo 26.04.2010 | Autor: | fred97 |
> Sei [mm]\Omega:=\{0,1\}^n, S:=\sum_{i=1}^{n} X_i[/mm] sowie die
> kanonische Projektion [mm]X_i: \Omega\rightarrow \{0,1\}[/mm] für
> alle [mm]i\in\{1,...,n\}[/mm] vorgegeben.
> Bestimmen Sie den Bildbereich [mm]S[\Omega].[/mm]
> Tag Leute,
> also S ist ja in üblicher Weise als Summe von Funktionen
> definiert.
> Es gilt also: [mm]S[\Omega]=(\sum_{i=1}^{n} X_i)[\Omega]=\sum_{i=1}^{n} X_i[\Omega]=\sum_{i=1}^{n} \{0,1\}=\{0,...n\}[/mm]
>
> Ist das so in Ordnung??
Für mich , ja.
FRED
> Oder wie könnte man das besser aufschreiben?
> Besten Dank schon mal.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:32 Mo 26.04.2010 | Autor: | kegel53 |
Okay :). Aber wie könnt ich das etwas besser aufschreiben, damit deulicher wird, dass nicht [mm] \{0,1\}+\{0,1\}=\{0,2\} [/mm] gilt, sondern [mm] \{0,1\}+\{0,1\}=\{0,1,2\} [/mm] bzw. dass deutlich wird warum das so ist?? Das geht aus der jetzigen Schreibweise ja nicht hervor.
So wies im Moment da steht könnte am Ende ja theoretisch auch [mm] \{0,n\} [/mm] stehn.
Vielen Dank schon mal!
|
|
|
|
|
Hallo kegel53,
wie Du selbst erkennst, ist es fraglich, was der Ausdruck [mm] $\sum_{i=1}^{n} X_i[\Omega]=\sum_{i=1}^{n} \{0,1\}$ [/mm] bedeuten soll. Dieser Ausdruck versteckt eigentlich nur Deine Argumente, die Du zu seiner Interpretation benötigst.
Eine durchsichtige Beweisführung kann in etwa so aussehen:
$ [mm] S[\Omega]=(\sum_{i=1}^{n} X_i)[\Omega]= \{(\sum_{i=1}^{n} X_i)(f)\,|\, f \in \Omega \} [/mm] = [mm] \{\sum_{i=1}^{n} X_i(f)\,|\, f \in \Omega \} [/mm] = [mm] \{0,\ldots,n\}$, [/mm] da für jede Teilmenge $M [mm] \subseteq \{1,\ldots,n\}$ [/mm] ein Element [mm] $f_M \in \Omega$ [/mm] existiert mit [mm] $f_M(i) [/mm] = 1$, falls [mm] $i\in [/mm] M$ und [mm] $f_M(i) [/mm] = 0$ falls $i [mm] \notin [/mm] M$, und alle Elemente von [mm] $\Omega$ [/mm] von dieser Form sind.
Gruß mathfunnel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:04 Mo 26.04.2010 | Autor: | kegel53 |
Hey vielen Dank. Das sieht dann doch schon besser aus. Aber kannst du mir den letzten Satz mit dem [mm] f_M [/mm] nochmal genauer erklären?? Dank dir!
|
|
|
|
|
Hallo kegel53,
üblicherweise schreibt man für das, was ich [mm] $f_M$ [/mm] mit $M [mm] \subseteq \{1,\ldots,n\}$ [/mm] genannt habe,
allgemeiner für eine Menge $T$ und Teilmenge $X [mm] \subset [/mm] T$, und nennt es die charakteristische Funktion oder Indikatorfunktion [mm] $\chi_X$ [/mm] der Teilmenge $X$:
[mm] $\chi_X:T\to \{0,1\},\ x\mapsto 1,\; \text{falls } [/mm] x [mm] \in [/mm] X , [mm] x\mapsto [/mm] 0, [mm] \;\text{sonst}$
[/mm]
Die Menge [mm] $\Omega$ [/mm] ist eine Menge von Folgen oder auch die Menge [mm] $\{0,1\}^{\{1,\ldots,n\}}$ [/mm] der charakteristischen Funktionen. Beispielsweise ist für [mm] $T=\{1,\ldots,5\}$ [/mm] die Folge bzw. char. Fkt. [mm] $f_{\{2,5\}} [/mm] = (01001)$ ein $S$-Urbild von $2$.
Gruß mathfunnel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:56 Di 27.04.2010 | Autor: | kegel53 |
Okay alles klar! Vielen Dank!!
|
|
|
|