www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Bilden von Basen von Vektorräu
Bilden von Basen von Vektorräu < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilden von Basen von Vektorräu: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 15:31 Fr 15.06.2007
Autor: fendral

Aufgabe
v1 = [mm] \vektor{1 \\ 1 \\ 1} [/mm] v2= [mm] \vektor{0 \\ 3 \\ 1} [/mm] v=3 [mm] \vektor{1 \\ -2 \\ 0} [/mm] v4= [mm] \vektor{-2 \\ 1 \\ -1} [/mm]

Man bestimme die Basis des von den Vektoren v1 - v4 aufgespannten Vektorraumes

Hallo!

Mir gehts um ein gesamtheitliches Verständnisproblem beim Konstruieren von Basen. Obiges Beispiel ist ein Beispiel aus einem Tutorium (wo ich natürlich nicht war...).

Was ich weiß ist, ich muss überprüfen ob obige Vektoren linear unabhängig sind.

So in unserem Script steht folgendes: "Es sei V ein K-Vektorraum. Eine Teilmenge U [mm] \subset [/mm] V von linear unabhängigen Vektoren heißt Basis von V, wenn gilt L(U) = V."

Daraus ersehe ich, dass ich eine Linearkombination bilden muss, jedoch von was?

Gibt es ein einfaches Kochrezept mit dem ich die Basis von Vektorräumen konstruieren kann?

Meine Idee: Ich nehme z.B. Vektor v1. Dann überprüfe ich ob v1 den ganzen Raum aufspannt. Wenn ja, ist das die Basis, ansonsten alle anderen Vektoren durchprobieren.

Oder soll ich mit dem Vektor b =  [mm] \vektor{1 \\ 0 \\ 0}. [/mm] Und sehen ob b [mm] \in [/mm] L(v1,v2,v3,v4)?

Wie ihr seht? Ich hab so Ideen, aber keinen wirklichen Plan. Ich bitte um kurze Hilfe!

Danke!
Fendral


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bilden von Basen von Vektorräu: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Fr 15.06.2007
Autor: schachuzipus

Hallo fendral,

die [mm] v_i [/mm] sind ja [mm] \in\IR^3, [/mm] dh. sie spannen einen Raum V auf mit [mm] \underline{höchstens} [/mm] Dimension 3, also [mm] dim(V)\le [/mm] 3

Also ist [mm] \{v_1,...v_4\} [/mm] linear abhängig - es sind ja mehr als 3 Vektoren

Du kannst bei der Bestimmung einer Basis von V konstruktiv vorgehen.

Schnapp dir [mm] v_1 [/mm] und nimm im ersten Schritt [mm] v_2 [/mm] hinzu und prüfe, ob die beiden linear unabhängig sond.

Falls nicht, schmeiß [mm] v_2 [/mm] weg und nimm [mm] v_3 [/mm] und prüfe, ob [mm] \{v_1,v_3\} [/mm] lin. unabh. ist usw.

Falls ja, nimm zu [mm] v_1 [/mm] und [mm] v_2 [/mm] noch [mm] v_3 [/mm] hinzu und prüfe, ob [mm] \{v_1,v_2,v_3\} [/mm] lin. unabh. ist

Falls nicht, hau [mm] v_3 [/mm] weg und nimm [mm] v_4 [/mm] dazu und prüfe erneut...

Falls ja, wärest du fertig, da du 3 lin. unabhängige Vektoren [mm] \in \IR^3 [/mm] hättest.

Geh's mal an, kannst ja (Zwischen)-Ergebnisse posten, dann gucken wir drüber, ob's klappt ;-)


LG

schachuzipus

Gruß

schachuzipus

Bezug
                
Bezug
Bilden von Basen von Vektorräu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Fr 15.06.2007
Autor: fendral

Hallo schachuzipus!

Danke für deine super schnelle Antwort!

Also ich habe es mal nach deiner Anleitung durchgerechnet, kann bei mir leider durchaus sein, dass ich mich verrechnet habe. Ergebnis:

$ [mm] v_1 [/mm] $ mit $ [mm] v_2 [/mm] $ ergibt l.u
$ [mm] v_1 [/mm] $ mit $ [mm] v_2 [/mm] $ mit $ [mm] v_3 [/mm] $ ebenfalls.

Dann ist mein Ergebnis für die Basis  $ [mm] v_1 [/mm] $, $ [mm] v_2 [/mm] $, $ [mm] v_3 [/mm] $
Ich habe auch (glaub ich) alle anderen 2er Kombinationen auf L.U überprüft, alle sind unabhängig. Bei einer 3er scheint das jedoch nicht zu stimmen nämlich: $ [mm] v_2 [/mm] $ bis $ [mm] v_4 [/mm] $.

Hoffe ich bin halbwegs richtig unterwegs.



Bezug
                        
Bezug
Bilden von Basen von Vektorräu: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Fr 15.06.2007
Autor: schachuzipus

Hi fendral,

ich glaube, du hast dich bei [mm] v_1,v_2,v_3 [/mm] verrechnet.

Wenn ich das LGS der LK so auf die Schnelle in ZSF bringe, erhalte ich eine Nullzeile und mithin unendlich viele Lösungen, also lineare Abhängigkeit..

Gruß

schachuzipus

Bezug
                                
Bezug
Bilden von Basen von Vektorräu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Fr 15.06.2007
Autor: fendral

Hallo!

Ja, du hast recht - die Nullzeile, dadurch unendlich viele Lsg. Ich habe daran nicht mehr gedacht - typisch.

Ich habe jedoch einen anderen Lösungsvorschlag.

[mm] \pmat{ 1 & 1 & 1 \\ 0 & 3& 1 \\ 1 & -2 & 0 \\ -2 & 1 & -1} \to [/mm]
[mm] \pmat{ 1 & 1 & 1 \\ 0 & 3& 1 \\ 0 & -3 & -1 \\ 0 & 3 & 1} \to [/mm]
[mm] \pmat{ 1 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0} [/mm]

[mm] \Rightarrow [/mm] Rang 2 [mm] \Rightarrow [/mm] dimV = 2

B = {v1,v2} ?

Bezug
                                        
Bezug
Bilden von Basen von Vektorräu: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Fr 15.06.2007
Autor: dormant

Hi!

Dein Lösungsweg ist richtig - schauen wie viel Vektoren lin. unabh. sind und dadurch die Dimension bestimmen. Dann kann man auch die Standardbasis für den gegeben VR nehmen. Aber ich finde v2, v3 und v4 sind lin. unabh., also dim=3. Du solltest deine Rechnung noch mal überprüfen.

Gruß,
dormant

Bezug
                                                
Bezug
Bilden von Basen von Vektorräu: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Fr 15.06.2007
Autor: schachuzipus

Hallo dormant,

[mm] v_2,v_3,v_4 [/mm] sind linear abhängig.

Wenn du bei dem zu lösenden LGS die 2Zeile zum (-3) fachen
der 3ten addierst, siehst du direkt, dass du im nächsten Schritt ne
Nullzeile bekommst.

Daher dim(V)=2

Gruß´

schachuzipus

Bezug
                                                        
Bezug
Bilden von Basen von Vektorräu: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Fr 15.06.2007
Autor: dormant

Stimmt, dim=2. Danke :)

Gruß,
dormant

Bezug
        
Bezug
Bilden von Basen von Vektorräu: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 Fr 15.06.2007
Autor: fendral

Danke für eure Hilfe, ich glaub ich habs jetzt, danke! Ich denke ich werde in den nächsten Tagen eure Hilfe überstrapazieren :D



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de