www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Bildung einer Umkehrfunktion
Bildung einer Umkehrfunktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bildung einer Umkehrfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:14 Di 02.05.2006
Autor: cfanta

Aufgabe
Gegeben ist die Funktion [mm] f(x) = \wurzel{2x} - x [/mm]
Die dazugehörige Kurve sei K.
Die Kurve, ihre Tangente im Hochpunkt und die y-Achse begrenzen eine Fläche. Berechne das Volumen des Körpers der entsteht, wenn diese Fläche um die y-Achse rotiert.

Hi

haben vor einer woche eine arbeit im mathe lk geschrieben und dort war diese aufgabe als zusatz gestellt. mein problem liegt bei der bildung der umkehrfunktion.

Ansatz: H(0,5/0,5)

falls ich zuerst quadriere komm ich auf einen ausdruck mit x² und x was mich nicht weiterbringt. hole ich das x gleich rüber habe ich x und y gemeinsam und als quadrate im ausdruck was ich auch nicht lösen kann.

komm einfach nich weiter hoffe ihr könnt mir helfen. danke
mfg Henning

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Bildung einer Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Di 02.05.2006
Autor: Zwerglein

Hi, cfanta,

die Umkehrfunktion Deiner Funktion kannst Du nur auf den Intervallen bilden, wo sie echt monoton ist.
Nach der Beschreibung des gesuchten Rotationsvolumens gilt bei Dir:
D = [0 ; 0,5];  W = [0; 0,5]

f: y = [mm] \wurzel{2x}-x [/mm]

Vertausche x und y:

x = [mm] \wurzel{2y}-y [/mm]

y auf die linke Seite, dann quadrieren:

[mm] (x+y)^{2} [/mm] = 2y

Alles auf die linke Seite und vernünftig anordnen:

[mm] y^{2} [/mm] +2(x-1)*y + [mm] x^{2} [/mm] = 0

Und nun mit Mitternachtsformel (oder p/q-Formel) nach y auflösen.  Verwende in der Lösung dasjenige Vorzeichen, für das die richtige Definitions- und Wertemenge (siehe oben!) gilt.

(Zum Vergleich: Bei mir kommt raus: [mm] y=-x+1-\wurzel{1-2x}, [/mm]
aber ohne Gewähr für Rechenfehler!)

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de