www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Bildungsgesetze von Folgen
Bildungsgesetze von Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bildungsgesetze von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Fr 28.11.2008
Autor: anjali251

Aufgabe
a) [mm] (a_{n})_{n\in\IN} [/mm] sei eine arithmetische Folge mit [mm] a_{6}=39 [/mm] und [mm] a_{15}=102. [/mm]
Geben Sie ein explizites und ein rekursives Bildungsgesetz für diese Folge an.

b) [mm] (c_{n})_{n\in\IN} [/mm] sei eine geometrische Folge mit [mm] b_{4}=-54 [/mm] und [mm] b_{9}=13122. [/mm]
Berechnen Sie [mm] b_{2} [/mm] und [mm] b_{10}. [/mm]

Hallo

Was bedeutet denn explizites und rekursives Bildungsgesetz überhaupt, was ist der Unterschied zwischen einer arithmetischen und einer geometrischen Folge und wie komme ich dann auf die Bildungsgesetze sowie [mm] b_{2} [/mm] und [mm] b_{10}? [/mm]

Wie macht man das, wo fängt man an?

        
Bezug
Bildungsgesetze von Folgen: Hinweise
Status: (Antwort) fertig Status 
Datum: 13:37 Fr 28.11.2008
Autor: Roadrunner

Hallo Anja!


Eine rekursive Darstellung einer Folge beinhaltet immer (mind.) eines der Vorgängerwerte.

Beispiel:  [mm] $a_{n} [/mm] \ = \ [mm] 2*a_{n-1}$ [/mm]
Du benötigst hier also zusätzlich eine Startglied (z.B. [mm] $a_1 [/mm] \ = \ 3$) sowie die Werte der Vorgängerglieder.


Bei der expliziten Darstellung kannst Du das n-te Folgenglied [mm] $a_n$ [/mm] direkt durch Einsetzen des Wertes $n_$ ermitteln. Denn in der expliziten Darstellung taucht als Unbekannte nur $n_$ auf.

Beispiel:  [mm] $a_{n} [/mm] \ = \ [mm] 3*2^{n-1}$ [/mm]


Bei einer arithmetischen Folge ist die Differenz zweier aufeinanderfolgenden Glieder konstant: [mm] $a_{n}-a_{n-1} [/mm] \ = \ d \ = \ [mm] \text{const.}$ [/mm]

Dagegen ist bei einer geometrischen Folge der Quotient zweier aufeinanderfolgenden Glieder konstant: [mm] $\bruch{a_{n}}{a_{n-1}} [/mm] \ = \ q \ = \ [mm] \text{const.}$ [/mm]


Es gilt für arithmetische Folgen:
[mm] $$\text{rekursiv :} [/mm] \ [mm] a_n [/mm] \ = \ [mm] a_{n-1}+d$$ [/mm]
[mm] $$\text{explizit :} [/mm] \ [mm] a_n [/mm] \  = \ [mm] a_1+(n-1)*d$$ [/mm]

Für geometrische Folgen gilt:
[mm] $$\text{rekursiv :} [/mm] \ [mm] a_n [/mm] \ = \ [mm] a_{n-1}*q$$ [/mm]
[mm] $$\text{explizit :} [/mm] \ [mm] a_n [/mm] \  = \ [mm] a_1*q^{n-1}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Bildungsgesetze von Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Sa 29.11.2008
Autor: anjali251

Vielen Dank, ich glaub jetzt krieg ich das hin ;-)

Gruß Katharina

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de