www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Bilinearform
Bilinearform < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Fr 07.09.2007
Autor: pusteblume86

Und schon wieder ich;)

Auch hier habe ich noch 2 Fragen:


1) kann man ein ON-System in einem endlich dimensionalen Vektorraum zu einer ON_BAsis ergänzen?

Ja kann man. Jedes ON-System von n Vektoren bildet ON_Basis im n-deminsionalen Vektorraum und jedes ON_System ist lineare unabhängig-.damit müsste ich also (ich denke mal nach Basisergänzungssatz) Vektoren aus dem Vektorraum V wählen können, (geeignete Vektoren die zu den anderen Orthogonal sind und zu 1 normiert sind) die dann zusammen mit den anderen eben eine ON_BAsis bilden.

Oder??

<,> ist eine Bilinearform.

Was sag ich denn dann zu <u,w> =1. Müsste man dann hier sagen, die Bilinearform von u und w ist 1 oder die Bilinearform auf u,w angewendet ergibt 1?

Skalarprodukt von u und w trifft ja zum Besipiel nur dann zu, wenn diese Bilinearform symmetrisch wäre.

Ich hoffe, dass mir auch hier jemand helfen kann.

Lg Sandra

        
Bezug
Bilinearform: zu 1)
Status: (Antwort) fertig Status 
Datum: 12:29 Fr 07.09.2007
Autor: angela.h.b.


> 1) kann man ein ON-System in einem endlich dimensionalen
> Vektorraum zu einer ON_BAsis ergänzen?

Hallo,

ich würde das so begründen:

Ein Orthonormalsystem ist linear unabhängig. Man kann es durch geeignete Vektoren einer Basis B des zugrunde liegenden Vektorraumes V zu einer Basis von B ergänzen.
Orthonormalisierung nach Gram-Schmidt liefert eine ONB.

Bei den Bilinearformen halte ich mich lieber raus.

Gruß v. Angela



Bezug
        
Bezug
Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Fr 07.09.2007
Autor: schachuzipus

Hi Sandra,

das Ding [mm] \langle u,w\rangle=1 [/mm] ist doch nie und nimmer ne BLF [kopfkratz3]

Gilt denn da die Linearität im ersten Argument?

Berechne mal [mm] \langle u+u',w\rangle [/mm] und [mm] \langle u,w\rangle+\langle u',w\rangle [/mm]

Ne BLF ist in erster Linie eine [mm] \undeline{Abbildung} $\langle ,\rangle:V\times W\to\IK$ [/mm] mit gewissen Eigenschaften (Bilinearität)

Wobei hier $V,W [mm] \quad \IK-VRe$ [/mm] sein sollen

Sieh auch nochmal in deinem Skript nach..


Gruß

schachuzipus

Bezug
                
Bezug
Bilinearform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:15 Fr 07.09.2007
Autor: angela.h.b.


> das Ding [mm]\langle u,w\rangle=1[/mm] ist doch nie und nimmer ne
> BLF [kopfkratz3]

Oh.
Ich hatte das ganz anders verstanden!

ich dachte, daß man sagen soll, was man über zwei Vektoren u,w sagen kann, wenn <u,v>=1 ist.

Hm.

Gruß v. Angela

Bezug
                        
Bezug
Bilinearform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Fr 07.09.2007
Autor: pusteblume86

Also nehmen wir mal folgendes aus unserem Script:

Sei <,> eine symmetrische Bilinearform auf dem K-Vektorraum V . Eine
Basis [mm] v_1,..., v_n [/mm] von V heißt Orthogonalbasis bzgl. <,>,
falls
[mm] [/mm] = 0 für alle i [mm] \not= [/mm] j
Gilt zusätzlich
[mm] [/mm] = 1 für  i = 1,..,n
so heißt die Basis Orthonormalbasis.

Ich meine zum Beispiel so etwas: Was sagt man dann zu <vi, vj> = 0

und es ist doch so, zumindest stehts im Script: Skalarprodukt ist eine positiv symmetrische Bilinearform

Hilfe ich verzweifel;)

Bezug
                                
Bezug
Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Fr 07.09.2007
Autor: schachuzipus

Hi Sandra,

> Also nehmen wir mal folgendes aus unserem Script:
>  
> Sei <,> eine symmetrische Bilinearform auf dem K-Vektorraum
> V . Eine
>  Basis [mm]v_1,..., v_n[/mm] von V heißt Orthogonalbasis bzgl. <,>,
>   falls
>  [mm][/mm] = 0 für alle i [mm]\not=[/mm] j [daumenhoch]

das heißt also, dass die Darstellungsmatrix (Gramsche Matrix) der BLF eine DIAGONALmatrix ist

>  Gilt zusätzlich
>  [mm][/mm] = 1 für  i = 1,..,n
>  so heißt die Basis Orthonormalbasis. [daumenhoch]

auch genau richtig, die Grammatrix ist in diesem Falle die Einheitsmatrix

>  
> Ich meine zum Beispiel so etwas: Was sagt man dann zu <vi,
> vj> = 0


du meinst, wie man es verbalisiert?

Hm ich würde es so sagen: [mm] "v_i [/mm] und [mm] v_j [/mm] sind orthogonal bzgl. [mm] \langle ,\rangle" [/mm]

> und es ist doch so, zumindest stehts im Script:
> Skalarprodukt ist eine positiv [mm] \red{definite} [/mm] symmetrische Bilinearform

jo, das ist so ;-)


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de