www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Bilinearform
Bilinearform < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearform: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 22:38 So 15.06.2008
Autor: marta

Hallo alle kann jemand mir hilfen?Habe folgende aufgaben.

[mm] {\bf [10 Punkte (3+3+4)]}\\ [/mm]
Sei [mm] $V=M_{2,2}(\mathbb{R})$ [/mm] und [mm] $\langle\cdot,\cdot\rangle$ [/mm] die Abbildung [mm] $V\times V\to \mathbb{R}$, $\langle A,B\rangle [/mm] := [mm] \operatorname{Spur}(A\cdot [/mm] B)$.
a)Zeigen Sie, dass [mm] $\langle\cdot,\cdot\rangle$ [/mm] eine symmetrische Bilinearform ist.
b) Bestimmen Sie die darstellende Matrix zu [mm] $\langle\cdot,\cdot\rangle$ [/mm] bzgl.\ einer geeigneten Basis.
c)Bestimmen Sie die Signatur von [mm] $\langle\cdot,\cdot\rangle$. [/mm] Ist [mm] $\langle\cdot,\cdot\rangle$ [/mm] nichtausgeartet?


        
Bezug
Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 So 15.06.2008
Autor: Tyskie84

Hallo,

> Hallo alle kann jemand mir hilfen?Habe folgende aufgaben.
>  
> [mm]{\bf [10 Punkte (3+3+4)]}\\[/mm]
>   Sei [mm]V=M_{2,2}(\mathbb{R})[/mm] und
> [mm]\langle\cdot,\cdot\rangle[/mm] die Abbildung [mm]V\times V\to \mathbb{R}[/mm],
> [mm]\langle A,B\rangle := \operatorname{Spur}(A\cdot B)[/mm].
> a)Zeigen Sie, dass [mm]\langle\cdot,\cdot\rangle[/mm] eine
> symmetrische Bilinearform ist.
> b) Bestimmen Sie die darstellende Matrix zu
> [mm]\langle\cdot,\cdot\rangle[/mm] bzgl.\ einer geeigneten Basis.
> c)Bestimmen Sie die Signatur von [mm]\langle\cdot,\cdot\rangle[/mm].
> Ist [mm]\langle\cdot,\cdot\rangle[/mm] nichtausgeartet?
>  

Ja, ok jetzt haben wir Aufgabenstellung. Was sollen wir jetzt damit machen? Lösen? [mm] \rightarrow [/mm] bestimmt nicht :-)

Zeig mal deine Ansätze oder gezielt eine Frage.

[hut] Gruß

Bezug
                
Bezug
Bilinearform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:49 Mo 16.06.2008
Autor: marta

bestimmt habe nicht so gemeint.sorry!möchte nur ein tip haben damit dass ich weiter beweisen oder wiederlegen kann.habe aber gerade ein script gefunden versuch ich dass die aufgabe a. beweisen.wenn du irgend eine idee hast bitte mitteilen
grüß marta

Bezug
        
Bezug
Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 08:11 Mo 16.06.2008
Autor: angela.h.b.


> Hallo alle kann jemand mir hilfen?Habe folgende aufgaben.
>  
> [mm]{\bf [10 Punkte (3+3+4)]}\\[/mm]
>   Sei [mm]V=M_{2,2}(\mathbb{R})[/mm] und
> [mm]\langle\cdot,\cdot\rangle[/mm] die Abbildung [mm]V\times V\to \mathbb{R}[/mm],
> [mm]\langle A,B\rangle := \operatorname{Spur}(A\cdot B)[/mm].
> a)Zeigen Sie, dass [mm]\langle\cdot,\cdot\rangle[/mm] eine
> symmetrische Bilinearform ist.

Hallo,

nachdem Du nun Dein Skript zur Hand hast, solltest Du erstmal nachschauen, welche Eigenschaften Du für "symmetrische Bilinearform" nachweisen mußt.

Etwas ungewohnt ist es sicher, daß Du es hier mit einer Bilinearform auf dem VR der Matrizen zu tun hast.
Wissen mußt Du für die Aufgabe auch noch, wie man die Spur einer Matrix berechnet.


> b) Bestimmen Sie die darstellende Matrix zu
> [mm]\langle\cdot,\cdot\rangle[/mm] bzgl.\ einer geeigneten Basis.

Mach Dich zunächst schlau, wie man die darstellende Matrix einer Bilinearform bekommt.
Dann überlege Dir eine einfache Basis des VRs der 2x2-Matrizen.


> c)Bestimmen Sie die Signatur von [mm]\langle\cdot,\cdot\rangle[/mm].
> Ist [mm]\langle\cdot,\cdot\rangle[/mm] nichtausgeartet?

Ob eine Bilinearform ausgeartet ist oder nicht, das sieht man daran, ob die darstellende Matrix invertierbar ist oder nicht.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de