www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Bilinearform, K-Vektorraum
Bilinearform, K-Vektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearform, K-Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Sa 04.06.2011
Autor: Achilles2084

Aufgabe
Zeigen Sie, dass die Menge der Bilinearformen auf V, BIL(V), mit den Verknüpfungen

(f+g)(v,w):=f(v,w)+g(v,w),  [mm] f,g\in [/mm] BIL(V), [mm] v,w\in [/mm] V

(xf)(v,w):=x*f(v,w) [mm] f\in [/mm] BIL(V), [mm] v,w\in [/mm] V

zu einem K-Vektorraum wird

Hallo nochmal,

dieses mal sind auf meinem Übungsblatt echt nervige Aufgaben. Ich denke die Aufgabe an sich ist nicht schwer aber ich habe Probleme mit dem Begriff der Bilinearität (Ja, ich hab auch schon nachgeforscht). Kann mir jemand vielleicht den Begriff kurz und einfach erklären?

Welche Eigenschaften muss ich in dieser AUfgabe zeigen?

Gruß und Danke

        
Bezug
Bilinearform, K-Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Sa 04.06.2011
Autor: kamaleonti

Moin,
> Zeigen Sie, dass die Menge der Bilinearformen auf V,
> BIL(V), mit den Verknüpfungen

V ist sicherlich endlichdimensional?

>  
> (f+g)(v,w):=f(v,w)+g(v,w),  [mm]f,g\in[/mm] BIL(V), [mm]v,w\in[/mm] V
>  
> (xf)(v,w):=x*f(v,w) [mm]f\in[/mm] BIL(V), [mm]v,w\in[/mm] V
>  
> zu einem K-Vektorraum wird
>  Hallo nochmal,
>  
> dieses mal sind auf meinem Übungsblatt echt nervige
> Aufgaben. Ich denke die Aufgabe an sich ist nicht schwer
> aber ich habe Probleme mit dem Begriff der Bilinearität
> (Ja, ich hab auch schon nachgeforscht). Kann mir jemand
> vielleicht den Begriff kurz und einfach erklären?

Eine Bilinearform [mm] b:V\times V\to\IR, (v,w)\mapsto [/mm] b(v,w) hat folgende Eigenschaften:

a) Lineariät im ersten Argument: Für alle [mm] v,w,x\in [/mm] V und [mm] \lambda, \mu\in [/mm] k gilt
                [mm] $b(\lambda*v+\mu*w, x)=\lambda [/mm] b(v, [mm] x)+\mu [/mm] b(w, x)$
b) Analog Linearität im zweiten Argument.

>  
> Welche Eigenschaften muss ich in dieser AUfgabe zeigen?

Tipp: Mit jeder Bilinearform ist eine Matrix eineindeutig assoziiert. Hat V also Dimension n, dann reicht es zu zeigen, dass BIL(V) ein Untervektorraum der [mm] n\times [/mm] n Matrizen ist.
Zeige also [mm] 0\in [/mm] BIL(V) sowie Abgeschlossenheit bzgl Skalarmultiplikation und Vektoraddition (die wurden oben definiert).

>  
> Gruß und Danke

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de