www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Bilinearform bezügl. Basis
Bilinearform bezügl. Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearform bezügl. Basis : Bestimmung, rausfinden in R3
Status: (Frage) beantwortet Status 
Datum: 18:23 So 05.06.2005
Autor: mimi94

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo!
Ich habe Probleme bei verschiedenen Aufgaben, bei denen man die Bilinear Form bestimmen soll.
Ich habe schon Problem e bei den Ansätzen, es wäre toll, wenn mir da jemand helfen könnte und mir bei diesen beiden Aufgaben das Verfahren erklärt, so dass ich dies noch an anderen Aufgaben nachrechnen kann.
1.)
Sei [mm] \beta [/mm]  : [mm] \IR^{3} [/mm] × [mm] \IR^{3} \to \IR [/mm] die Bilinearform
[mm] \beta((a, [/mm] b, c), (d, e, f))=ad + 2bf + cf + 2ce − ae + be − bd.
Bestimme die Matrix [mm] [\beta]_{B} [/mm] bezüglich der geordneten Standardbasis B von [mm] \IR^{3} [/mm] .
Die Standardbasis ist doch wie immer :(1,0,0);(0,1,0);(0,0,1)?

2.)
Sei [mm] \beta [/mm]  : [mm] \IR^{3} [/mm] × [mm] \IR^{3} \to \IR [/mm] die Bilinearform
[mm] \beta [/mm] (x, y) = [mm] xAy^{t} [/mm] mit A [mm] =\pmat{ 0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 } [/mm]
Bestimme [mm] [\beta]_{B} [/mm] bezüglich der geordneten Basis B =((1, 0, 0), (0, 1, 1), (1, 0, 1))
Diese AUfgabe finde ich noch besonders schwer, da hier nicht mit der Standardbasis gerechnet wird.
Ich danke schonmal für jede Hilfe!!!



        
Bezug
Bilinearform bezügl. Basis : Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Mo 06.06.2005
Autor: Julius

Hall mimi!

Es muss ja gelten:

[mm] $\beta((a,b,c),(d,e,f)) [/mm] = [mm] \pmat{a & b & c} \cdot [\beta]_B \cdot \pmat{d \\ e \\ f}$. [/mm]

Daraus folgt offenbar:

[mm] $[\beta]_B [/mm] = [mm] \pmat{ 1 & -1 & 0 \\ -1 & 1 & 2 \\ 0 & 2 & 1}$. [/mm]

> 2.)
>  Sei [mm]\beta[/mm]  : [mm]\IR^{3}[/mm] × [mm]\IR^{3} \to \IR[/mm] die Bilinearform
>  [mm]\beta[/mm] (x, y) = [mm]xAy^{t}[/mm] mit A [mm]=\pmat{ 0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 }[/mm]
>  
> Bestimme [mm][\beta]_{B}[/mm] bezüglich der geordneten Basis B =((1,
> 0, 0), (0, 1, 1), (1, 0, 1))

Es gilt:

[mm] $[beta]_B [/mm] = [mm] \pmat{ \beta((1,0,0),(1,0,0)) & \beta((1,0,0),(0,1,1)) & \beta((1,0,0),(1,0,1)) \\ \beta((0,1,1),(1,0,0)) & \beta((0,1,1),(0,1,1)) & \beta((1,0,0),(1,0,1)) \\ \beta((1,0,1),(1,0,0)) & \beta((1,0,1),(0,1,1)) & \beta((1,0,1),(1,0,1)) }$. [/mm]

Rechne die Einträge nun einfach unter Beachtung der Bilinearität von [mm] $\beta$ [/mm] aus. :-)

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de