www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Bilinearformen
Bilinearformen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearformen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 13:48 Sa 13.06.2015
Autor: Lara001

Aufgabe
Welche der folgenden Abbildungen f : [mm] K^{2} [/mm] → K sind Bilinearformen?
1. f(x, y) = x + y
2. f(x, y) = [mm] x^{2} [/mm] + [mm] y^{2} [/mm]
3. f(x, y) = xy
4. f(x, y) = [mm] xy^{2} [/mm]

Hallo :)

also ich soll generell die folgenden Abbildungen untersuchen ob sie Bilinearform sind.

Da gibt es ja die Folgenden Kriterien:

[mm] f(x_{1}+x_{2},y)=f(x_{1},y)+f(x_{2},y) [/mm]
[mm] f(\lambda x,y)=\lambda [/mm] f(x,y)
[mm] f(x,y_{1}+y_{2})=f(x,y_{1})+f(x,y_{2}) [/mm]
[mm] f(x,\lambda y)=\lambda [/mm] f(x,y)

jetzt bin ich etwas irritiert weil ich in den Aufgaben als Ergebnis nix mit [mm] x_{1} [/mm] und oder [mm] x_{2} [/mm] habe sondern nur wieder generelles x und y.

generell würde ich sagen dass 1. und 2. nicht bilinear sind weil für x= [mm] \vektor{0 \\ 0} [/mm] und y= [mm] \vektor{0 \\ 1} [/mm] nicht Null rauskommt und daher sie nicht linear sind.

liebe grüße :)

        
Bezug
Bilinearformen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Sa 13.06.2015
Autor: abakus


> Welche der folgenden Abbildungen f : [mm]K^{2}[/mm] → K sind
> Bilinearformen?
> 1. f(x, y) = x + y
> 2. f(x, y) = [mm]x^{2}[/mm] + [mm]y^{2}[/mm]
> 3. f(x, y) = xy
> 4. f(x, y) = [mm]xy^{2}[/mm]
> Hallo :)

>

> also ich soll generell die folgenden Abbildungen
> untersuchen ob sie Bilinearform sind.

>

> Da gibt es ja die Folgenden Kriterien:

>

> [mm]f(x_{1}+x_{2},y)=f(x_{1},y)+f(x_{2},y)[/mm]
> [mm]f(\lambda x,y)=\lambda[/mm] f(x,y)
> [mm]f(x,y_{1}+y_{2})=f(x,y_{1})+f(x,y_{2})[/mm]
> [mm]f(x,\lambda y)=\lambda[/mm] f(x,y)

>

> jetzt bin ich etwas irritiert weil ich in den Aufgaben als
> Ergebnis nix mit [mm]x_{1}[/mm] und oder [mm]x_{2}[/mm] habe sondern nur
> wieder generelles x und y.

>

> generell würde ich sagen dass 1. und 2. nicht bilinear
> sind weil für x= [mm]\vektor{0 \\ 0}[/mm] und y= [mm]\vektor{0 \\ 1}[/mm]
> nicht Null rauskommt und daher sie nicht linear sind.

>

> liebe grüße :)

Hallo,
wenn du  f(x, y) = x + y 
auf [mm]f(x_{1}+x_{2},y)[/mm] anwendest, erhältst du
[mm](x_{1}+x_{2})+y[/mm].
Das ist allerdings nicht dasselbe wie
[mm]f(x_{1},y)+f(x_{2},y)[/mm], denn hier müsste nach Anwendung von 
 f(x, y) = x + y auf beide Summanden die Summe 
[mm](x_1+y)+(x_2+y)[/mm] rauskommen, was sich durch einen zusätzlichen Summanden y von  [mm](x_{1}+x_{2})+y[/mm]unterscheidet.

Bezug
                
Bezug
Bilinearformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Sa 13.06.2015
Autor: Lara001

also muss ich auf der rechten Seite einfach für x [mm] \to (x_{1}+x_{2}) [/mm] einsetzten?

bzw ist meine Argumentation mit der Nullabbildung auf 0 auch richtig?

Bezug
                        
Bezug
Bilinearformen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Sa 13.06.2015
Autor: hippias

Du musst beachten wie $f$ definiert ist: Es ist [mm] $f:K^{2}\to [/mm] K$, d.h. in $f(x,y)$ sind $x$ und $y$ Skalare; Du aber wollest $f$ auf Vektoren anwenden. Und ja: $f(0,y)=0$ fuer alle [mm] $y\in [/mm] K$.  

Bezug
                                
Bezug
Bilinearformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 So 14.06.2015
Autor: Lara001

danke erstmal für eure antworten :)

du meinst sicher f(0,y)=y oder?

Ich glaube ich hab die Art von Abbildung jetzt verstanden.

Dass bei [mm] K^{2} \to K^1 [/mm] einfach 2 Skalare in eines umgewandelt werden.
Wohingegen bei [mm] V^{2} [/mm] x [mm] V^{2} \to K^1 [/mm] zwei Vektoren in ein Skalar umgewandelt werden.

so erstmal korrekt?

Ist dann jedoch die Argumentation von abakus richtig? Weil ich ja da mit [mm] x_{1} [/mm] und [mm] x_{2} [/mm] argumentiere und das ja Komponeneten eines Vekors darstellen.

Liebe Grüße



Bezug
                                        
Bezug
Bilinearformen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 So 14.06.2015
Autor: hippias


> danke erstmal für eure antworten :)
>  
> du meinst sicher f(0,y)=y oder?

Nein, ich meinte es so wie ich geschrieben habe. Ich bezog mich damit auf Deine erste Mitteilung, in der es unter anderem um die Feststellung ging, dass $f(0,y)=0$ ist, falls $f$ bilinear ist.

>  
> Ich glaube ich hab die Art von Abbildung jetzt verstanden.
>  
> Dass bei [mm]K^{2} \to K^1[/mm] einfach 2 Skalare in eines
> umgewandelt werden.
>  Wohingegen bei [mm]V^{2}[/mm] x [mm]V^{2} \to K^1[/mm] zwei Vektoren in ein
> Skalar umgewandelt werden.
>  
> so erstmal korrekt?
>  
> Ist dann jedoch die Argumentation von abakus richtig? Weil
> ich ja da mit [mm]x_{1}[/mm] und [mm]x_{2}[/mm] argumentiere und das ja
> Komponeneten eines Vekors darstellen.
>  
> Liebe Grüße
>  

Ueberpruefe einfach, ob die Funktion die geforderten Eigenschaften hat. Sei beispielsweise $f(x,y)=x+y$ und seien $a,b,c$ Skalare. Gilt dann $f(a+b,c)= f(a,c)+f(b,c)$?

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de