www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Bingo Gewinnspiel
Bingo Gewinnspiel < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bingo Gewinnspiel: Frage
Status: (Frage) beantwortet Status 
Datum: 09:30 Mi 24.11.2004
Autor: matthias.h.

Ich habe die Frage schon einmal in diesem Forum gestellt, bisher jedoch keine mir verständliche Antwort erhalten. Ich bitte um erneute Hilfe und bedanke mich im Voraus recht herzlich.

Es geht um ein Bingo Spiel mit 90 Zahlen (Kugeln). Der Spieler hat einen Spielschein mit 5 beliebigen Zahlen von 1-90. Bei einer Ziehung von 10 Zahlen (Kugeln) (aus diesen Zahlen 1-90) müssen die vorgebenen 5 Zahlen auf dem Spielschein getroffen werden. Wie groß ist die Wahrscheinlichkeit, dass der Gewinnfall eintritt.

Danke für die Hilfe.

Gruß Matthias


        
Bezug
Bingo Gewinnspiel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Do 25.11.2004
Autor: Brigitte

Hallo Matthias!

> Ich habe die Frage schon einmal in diesem Forum gestellt,
> bisher jedoch keine mir verständliche Antwort erhalten. Ich
> bitte um erneute Hilfe und bedanke mich im Voraus recht
> herzlich.

Aus Zeitmangel habe ich jetzt die Äußerungen zu Deinem ersten Posting nicht mehr gelesen. Ich nehme mal an, dass es hier nicht darum geht, BINGO durch eine waagerechte, senkrechte oder sonst wie Formation zu erreichen.
  

> Es geht um ein Bingo Spiel mit 90 Zahlen (Kugeln). Der
> Spieler hat einen Spielschein mit 5 beliebigen Zahlen von
> 1-90. Bei einer Ziehung von 10 Zahlen (Kugeln) (aus diesen
> Zahlen 1-90) müssen die vorgebenen 5 Zahlen auf dem
> Spielschein getroffen werden. Wie groß ist die
> Wahrscheinlichkeit, dass der Gewinnfall eintritt.

Auf die Reihenfolge kommt es also nicht an bei der Ziehung. Außerdem nehme ich an, dass die Kugeln nicht wieder zurückgelegt werden. Dann gibt es ${90 [mm] \choose [/mm] 10}$ Möglichkeiten für das Ergebnis der Ziehung. Wenn unsere 5 dabei sein sollen, bleiben für die Besetzung der anderen 5 Kugeln die restlichen 85. Also ist die Wahrscheinlichkeit für einen Gewinn

[mm]\frac{{5 \choose 5}\cdot{85 \choose 5}}{{90 \choose 10}}[/mm]

Das kommt mir zwar gerade sehr einfach vor, aber ich finde die Argumentation schlüssig. Was meinst Du?

Viele Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de