www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Binomialkoeffizient
Binomialkoeffizient < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:44 Mo 25.10.2010
Autor: folken

Aufgabe
Beweisen Sie für n,m [mm] \in \IN [/mm] mit m <= n die Identität

[mm] \vektor{n \\ m-1} [/mm] + [mm] \vektor{n \\ m} [/mm] = [mm] \vektor{n+1 \\ m} [/mm]

ohne Verwendung der Gleichung [mm] \vektor{n \\ k} =\bruch{n!}{(n-k)!*k!} [/mm]


Hallo,

mein Problem ist, dass ich mir nicht vorstellen kann, wie eine (m-1) elementige Teilmenge einer n-elementigen Menge aussehen soll.

Mein Verständnis: Wenn ich eine Teilmenge(eine m-elementige Teilmenge) rausnehme, dann wird ja auch implizit auch aus der n-elementigen Menge was entfernt, aber dann ist das doch der Ausdruck : [mm] \vektor{n-1 \\ m-1} [/mm] und nicht der obige Ausdruck [mm] \vektor{n \\ m-1}. [/mm]

Kann mir jemand erklären wo mein Denkfehler ist?

        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Mo 25.10.2010
Autor: vivo

Hallo,

[mm]\vektor{n \\ m-1}[/mm] = [mm]\vektor{n+1 \\ m} - \vektor{n \\ m} [/mm]

wie viel mehr Möglichkeiten gibt es eine m-elementige Teilmenge aus einer (n+1)-elementigen als aus einer n-elementigen Menge herauszunehmen?

Wir finden einfach alle Möglichkeiten eine (m-1)-elementige Teilmenge aus einer n-elementigen Menge herauszunehmen und hängen gedanklich an jede gefundene Teilmenge das (n+1)'te Element an, dann haben wir m-elementige Teilmengen.

Nur zum Verständnis, bewiesen werden muss es natürlich noch.

Gruß


Bezug
                
Bezug
Binomialkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 Mo 25.10.2010
Autor: folken

Danke für deine Antwort.

Ich komme irgendwie nicht auf die Lösung, wobei ich das Thema mit dem Binomialkoeffizienten und den Teilmengen der Mengen wohl verstanden habe.
Kann mir jemand einen Ansatz geben?

Bezug
                        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Mo 25.10.2010
Autor: MathePower

Hallo folken,

> Danke für deine Antwort.
>  
> Ich komme irgendwie nicht auf die Lösung, wobei ich das
> Thema mit dem Binomialkoeffizienten und den Teilmengen der
> Mengen wohl verstanden habe.
>  Kann mir jemand einen Ansatz geben?


Nach dem binomischen Satz gilt:

[mm]\left(1+t\right)^{n}=\summe_{m=0}^{n}\pmat{n \\ m}t^{m}[/mm]

Entsprechend gilt:

[mm]\left(1+t\right)^{n+1}=\summe_{m=0}^{n+1}\pmat{n+1 \\ m}t^{m}[/mm]

Um obiges zu zeigen, multipliziere zunächst den Ausdruck

[mm]\summe_{m=0}^{n}\pmat{n \\ m}t^{m}[/mm]

mit 1+t

Berechne also

[mm]\left(1+t\right)*\summe_{m=0}^{n}\pmat{n \\ m}t^{m}[/mm]

und vergleiche dies mit

[mm]\summe_{m=0}^{n+1}\pmat{n+1 \\ m}t^{m}[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de