www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Binomialkoeffizienten
Binomialkoeffizienten < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizienten: kombinatorisches Rechnen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:02 So 12.02.2012
Autor: clemenum

Aufgabe
Interpretieren Sie die Multiplikation zweier Binomialkoeffizienten ${a [mm] \choose [/mm] b} [mm] \cdot {d\choose e} [/mm] (a,b,c,d [mm] \in \mathbb{N}) [/mm] $kombinatorisch und versuchen Sie danach ohne Einsetzen in die Definition z.B. [mm] ${3\choose 5}\cdot {8\choose 2}$ [/mm]  zu berechnen.

Ahm.... ich verstehe die Aufgabe nicht so ganz.

Wir dürfen voraussetzen, was der Binomialkoeffizient (kombinatorisch) bedeutet. Soweit ich weiß, genügt es hier eine Frage zu formulieren, auf die die Antwort die Angabe ist.

Die Frage soll von folgender Art sein: "Wie viele b elemntigen Teilmengen einer a-elementigen menge gehen in eine e-elementige Teilmenge einer... "

Ich habe mit dieser vorstellung aber gewisse probleme und bitte euch um hilfe.

        
Bezug
Binomialkoeffizienten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:39 Mo 13.02.2012
Autor: clemenum

Eine Frage: Habe ich zu wenig beigetragen, dass mir keiner antwortet?

Das Problem: Ich kann mir unter einer Verknüpfung von Binomialkoeffizienten nur wenig vorstellen.  Wie kann ich das Malzeichen kombinatorisch deuten?

Bezug
        
Bezug
Binomialkoeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 09:04 Mo 13.02.2012
Autor: statler

Guten Morgen!

> Interpretieren Sie die Multiplikation zweier
> Binomialkoeffizienten [mm]{a \choose b} \cdot {d\choose e} (a,b,c,d \in \mathbb{N}) [/mm]kombinatorisch
> und versuchen Sie danach ohne Einsetzen in die Definition
> z.B. [mm]{3\choose 5}\cdot {8\choose 2}[/mm]  zu berechnen.
>  Ahm.... ich verstehe die Aufgabe nicht so ganz.

Wenn dich das tröstet: Ich auch nicht! Immerhin ist das Ergebnis deines Zahlenbeispiels 0, weil [mm] \vektor{3 \\ 5} [/mm] = 0 ist. Vielleicht meinst du aber [mm] \vektor{5 \\ 3}. [/mm]
Dann fällt mir ein, daß bei der hypergeometrischen Verteilung ein Produkt von Binomialkoeffizienten auftaucht. Wenn du aus 13 numerierten Kugeln 5 ziehst und nach der Anzahl der Möglichkeiten fragst, bei denen 3 Kugeln Nummern von 1 bis 5 tragen, dann ist die Anwort gerade [mm] \vektor{5 \\ 3}\cdot\vektor{8 \\ 2}. [/mm]
Das ist eine kombinatorische Interpretation, aber keine echte Berechnungshilfe. Oder?
Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de