Binomialmodell < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:10 Fr 09.12.2016 | Autor: | astol |
Aufgabe | In einem Text von 37 Seiten sind insgesamt 50 Druckfehler enthalten; diese sind zufällig über den ganzen Text verteilt. Ermitteln Sie mit welcher Wahrscheinlichkeit auf einer bestimmten Seite, kein, ein zwei, drei oder mehr als drei Druckfehler vorhanden sind. |
Hallo zusammen, im Prinzip hab ich die Aufgabe verstanden, ich hänge nur bei der konkreten Angabe von n, p und k und es wäre nett wenn Ihr mir da helfen könntet.
Da ich mir ja eine bestimmte Seite angucken, kann ich mir das so vorstellen, dass diese Bestimmte Seite sich die Druckfehler (aus einer Urne) zieht, oder?
Die Wahrscheinlichkeit p ist dann die Wahrscheinlichkeit, dass diese bestimmte Seite einen Druckfehler abbekommt, richtig?
Weil sich die Wahrscheinlichkeit bei jedem Zug nicht ändert und wir nur zwei mögliche Ausgänge haben. Seite zieht Fehler oder zieht keinen Fehler liegt eine Binomialverteilung vor, die ich dann mit
[mm] P(X=k)=\vektor{n \\ k}*p^k*(1-p)^{n-k}
[/mm]
berechnen kann.
Aber zurück zu meiner Frage: Wie sehen n und p hier konkret aus?
Könnt ihr mir da helfen? DANKE Für Eure Hilfe und ein schönes Wochenende
Grüße
Na und jetzt sollte die Frage nach den Wahrscheinlichkeiten, dass Seite 7 des Textes, 0, 1, 2, 3, mehr als 3 Druckfehler abbekommt doch einfach zu beantworten sein ... Big Laugh
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:26 Fr 09.12.2016 | Autor: | hippias |
> In einem Text von 37 Seiten sind insgesamt 50 Druckfehler
> enthalten; diese sind zufällig über den ganzen Text
> verteilt. Ermitteln Sie mit welcher Wahrscheinlichkeit auf
> einer bestimmten Seite, kein, ein zwei, drei oder mehr als
> drei Druckfehler vorhanden sind.
> Hallo zusammen, im Prinzip hab ich die Aufgabe verstanden,
> ich hänge nur bei der konkreten Angabe von n, p und k und
> es wäre nett wenn Ihr mir da helfen könntet.
>
> Da ich mir ja eine bestimmte Seite angucken, kann ich mir
> das so vorstellen, dass diese Bestimmte Seite sich die
> Druckfehler (aus einer Urne) zieht, oder?
Das ist ein legitimer Ansatz, aber bedenke, dass bei diesem Modell Ziehen ohne Zurückliegen vorliegen würde, sodass keine Binomialmodell anwendbar wäre.
> Die Wahrscheinlichkeit p ist dann die Wahrscheinlichkeit,
> dass diese bestimmte Seite einen Druckfehler abbekommt,
> richtig?
>
> Weil sich die Wahrscheinlichkeit bei jedem Zug nicht
> ändert
Doch, s.o.
> und wir nur zwei mögliche Ausgänge haben. Seite
> zieht Fehler oder zieht keinen Fehler liegt eine
> Binomialverteilung vor, die ich dann mit
> [mm]P(X=k)=\vektor{n \\ k}*p^k*(1-p)^{n-k}[/mm]
> berechnen kann.
Versuche nicht die Druckfehler aus der Urne zu ziehen, sondern die Seiten. Ein Treffer liegt vor, wenn die bestimmte Seite gezogen wurde.
>
> Aber zurück zu meiner Frage: Wie sehen n und p hier
> konkret aus?
> Könnt ihr mir da helfen? DANKE Für Eure Hilfe und ein
> schönes Wochenende
> Grüße
>
> Na und jetzt sollte die Frage nach den
> Wahrscheinlichkeiten, dass Seite 7 des Textes, 0, 1, 2, 3,
> mehr als 3 Druckfehler abbekommt doch einfach zu
> beantworten sein ... Big Laugh
>
|
|
|
|