www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Binomialmodell
Binomialmodell < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialmodell: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:10 Fr 09.12.2016
Autor: astol

Aufgabe
In einem Text von 37 Seiten sind insgesamt 50 Druckfehler enthalten; diese sind zufällig über den ganzen Text verteilt. Ermitteln Sie mit welcher Wahrscheinlichkeit auf einer bestimmten Seite, kein, ein zwei, drei oder mehr als drei Druckfehler vorhanden sind.

Hallo zusammen, im Prinzip hab ich die Aufgabe verstanden, ich hänge nur bei der konkreten Angabe von n, p und k und es wäre nett wenn Ihr mir da helfen könntet.

Da ich mir ja eine bestimmte Seite angucken, kann ich mir das so vorstellen, dass diese Bestimmte Seite sich die Druckfehler (aus einer Urne) zieht, oder?
Die Wahrscheinlichkeit p ist dann die Wahrscheinlichkeit, dass diese bestimmte Seite einen Druckfehler abbekommt, richtig?

Weil sich die Wahrscheinlichkeit bei jedem Zug nicht ändert und wir nur zwei mögliche Ausgänge  haben. Seite zieht Fehler oder zieht keinen Fehler liegt eine Binomialverteilung vor, die ich dann mit
[mm] P(X=k)=\vektor{n \\ k}*p^k*(1-p)^{n-k} [/mm]
berechnen kann.

Aber zurück zu meiner Frage: Wie sehen n und p hier konkret aus?
Könnt ihr mir da helfen? DANKE Für Eure Hilfe und ein schönes Wochenende
Grüße

Na und jetzt sollte die Frage nach den Wahrscheinlichkeiten, dass Seite 7 des Textes, 0, 1, 2, 3, mehr als 3 Druckfehler abbekommt doch einfach zu beantworten sein ... Big Laugh


        
Bezug
Binomialmodell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 09.12.2016
Autor: Martinius

Hallo astol,

vielleicht hilft Dir eine Seite von diesen:

[]https://www.google.de/?gws_rd=ssl#q=Elemente+Kugel+F%C3%A4cher+Modell


LG, Martinius

Bezug
        
Bezug
Binomialmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Fr 09.12.2016
Autor: hippias


> In einem Text von 37 Seiten sind insgesamt 50 Druckfehler
> enthalten; diese sind zufällig über den ganzen Text
> verteilt. Ermitteln Sie mit welcher Wahrscheinlichkeit auf
> einer bestimmten Seite, kein, ein zwei, drei oder mehr als
> drei Druckfehler vorhanden sind.
>  Hallo zusammen, im Prinzip hab ich die Aufgabe verstanden,
> ich hänge nur bei der konkreten Angabe von n, p und k und
> es wäre nett wenn Ihr mir da helfen könntet.
>  
> Da ich mir ja eine bestimmte Seite angucken, kann ich mir
> das so vorstellen, dass diese Bestimmte Seite sich die
> Druckfehler (aus einer Urne) zieht, oder?

Das ist ein legitimer Ansatz, aber bedenke, dass bei diesem Modell Ziehen ohne Zurückliegen vorliegen würde, sodass keine Binomialmodell anwendbar wäre.

>  Die Wahrscheinlichkeit p ist dann die Wahrscheinlichkeit,
> dass diese bestimmte Seite einen Druckfehler abbekommt,
> richtig?
>  
> Weil sich die Wahrscheinlichkeit bei jedem Zug nicht
> ändert

Doch, s.o.

> und wir nur zwei mögliche Ausgänge  haben. Seite
> zieht Fehler oder zieht keinen Fehler liegt eine
> Binomialverteilung vor, die ich dann mit
> [mm]P(X=k)=\vektor{n \\ k}*p^k*(1-p)^{n-k}[/mm]
>  berechnen kann.

Versuche nicht die Druckfehler aus der Urne zu ziehen, sondern die Seiten. Ein Treffer liegt vor, wenn die bestimmte Seite gezogen wurde.

>  
> Aber zurück zu meiner Frage: Wie sehen n und p hier
> konkret aus?
>  Könnt ihr mir da helfen? DANKE Für Eure Hilfe und ein
> schönes Wochenende
>  Grüße
>  
> Na und jetzt sollte die Frage nach den
> Wahrscheinlichkeiten, dass Seite 7 des Textes, 0, 1, 2, 3,
> mehr als 3 Druckfehler abbekommt doch einfach zu
> beantworten sein ... Big Laugh
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de