www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Binomialverteilung
Binomialverteilung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Do 13.04.2006
Autor: Mato

Aufgabe
Eine Firma stellt Drahtzaun her. Dieser wird in Form von Rollen ausgeliefert. Es ist bekannt, dass 4% aller Rollen Ausschuss sind. Die Ausschussrollen treten unabhängig voneinander auf.
a) Der  laufenden Produktion werden 25 Rollen Drahtzaun entnommen. Die Zufallsgröße X beschreibt die Anzahl der dabei auftretenden Ausschussrollen. Berechnen Sie die Wahrscheinlichkeiten folgender Ereignisse :
A: Keine der entnommenen Rollen ist Ausschuss
B: Mindestens 2, aber höchstens 4 Rollen sind Ausschuss
C: Mindestens 3 Rollen sind Ausschuss
b) Eine Rolle ist Ausschuss, wenn sie mindestens einen der beiden Fehler F1:"Fehler in Qualität" oder F2:"Fehler im Drahtgeflecht" hat. Andere Fehlerarten kommen nicht vor. Beide Fehler treten unabhängig voneinander auf. DIe Wahrscheinlichkeit für F1 beträgt 0,025. Ermitteln Sie die Wahrscheinlichkeit, mit der der Fehler F2 auftritt.

Hallo!
Die Ergebnisse von Aufgabenteil a) sind nach meiner Rechnung:
P(A)= 36,04%
P(B)= 26,14%
P(C)= 7,65%
Ich bitte dies zu überprüfen.
Nur mit Aufgabenteil b) habe ich Probleme. Die Wahrscheinlichkeit, dass überhaupt ein Fehler auftritt ist ja 4%. Und für F1 2,5%. Dann wäre die Wahscheinlichkeit für F2: 4%-2,5%= 1,5%?!
Das wäre doch viel zu einfach.
DAnke im voraus!

        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Do 13.04.2006
Autor: Walde

hi Mato,

also nachgerechnet hab ich nix. Ich traue dir zu, in ne Formel einzusetzen(oder ne Tabelle abzulesen).

Bei der b) habe ich folgenden Ansatz:

[mm] P(Ausschuss)=P(F_1 [/mm] oder [mm] F_2)=P(F_1\cup F_2) [/mm]

[mm] P(F_1\cup F_2)=P(F_1)+P(F_2)-P(F_1\cap F_2) [/mm]

und da [mm] F_1 [/mm] und [mm] F_2 [/mm] unabhänging sind, gilt [mm] P(F_1\cap F_2)=P(F_1)*P(F_2) [/mm]

Damit solltest du auf die Lösung kommen, die Werte der W'keiten di edu brauchst hast du ja angegeben.

L G walde

Bezug
                
Bezug
Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Do 13.04.2006
Autor: Mato

Danke für die schnelle Antwort.
Dennoch verstehe ich es nicht so richtig. Gesucht ist doch P(F2). Und für die Schnittmenge der beiden Wahrscheinlichkeiten brauche ich ja P(F2).
Oder ist P(F2)=4%-2,5%=1,5%? Wenn ja, dann habe ich die gesuchte Wahrscheinlichkeit. Warum sollte man nach der Formel, die du angegeben hast, P(F2) ausrechnen, obwohl man P(F2) hat.
Trotzdem hab ich es gemacht und man kommt auf 1,5375 %, was auch seltsam ist, weil man ja eigentlich auf 1,5% kommen müsste.


Bezug
                        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Do 13.04.2006
Autor: Walde

Hi Mato,

genau, gesucht ist [mm] P(F_2), [/mm] d.h. man löst die Formel

[mm] P(F_1\cup F_2)=P(F_1)+P(F_2)-P(F_1)*P(F_2), [/mm]

(so wie du es ja auch ausgerechnet hast mit 1,5375%) nach der gesuchten Variablen [mm] P(F_2) [/mm] auf. Das Problem bei deiner Idee, einfach
[mm] P(F_1\cup F_2)-P(F_1)=P(F_2) [/mm]
zurechnen ist, dass es nicht diejenigen Zaunrollen berücksichtigt, die BEIDE Fehler haben. Das machst du nämlich mit dem Term [mm] P(F_1)*P(F_2). [/mm] Das ist einfache Mengenlehre: Die Vereinigung zweier Mengen ist einfach die Summe, der einzelnen Mengen. Dabei zählt man diejenigen Elemente doppelt, die in beiden Mengen vorkommen (also im Schnitt enthalten sind). Man subtrahiert also den Schnitt einmal, dann hat man die Doppelten weg.

Jetzt klarer?

LG walde






Bezug
                                
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Do 13.04.2006
Autor: Mato

Ja, jetzt hab ich es verstanden. Danke nochmal!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de