www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Binomialverteilung
Binomialverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Fr 28.04.2006
Autor: popati

Aufgabe
In einem Abschnitt eines Videospiels muss der Held zunächst 8 Wassergräben und danach 2 gefährliche Brücken überwinden. Wurde ein Hindernis unbeschadet überwunden, erhält der Spieler Punkte. Ansonsten läuft das Spiel weiter, der Spieler erhält keine Punkte.
Wir betrachten im folgenden einen Spieler mit konstanter Spielstärke. Die Wahrscheinlichkeit, einen Wassergraben unbeschadet zu überwinden, beträgt für diesen Spieler 0,4. Die Wahrscheinlichkeit, eine Brücke unbeschadet zu passieren, beträgt 0,6.

(1) Berechnen Sie für diesen Spielabschnitt die Wahrscheinlichkeit der nachfolgenden Ereignisse.
A:   Der Held überwindet alle Wassergräben unbeschadet.
B:   Der Held überwindet genau die ersten vier Wassergräben und genau die erste Brücke unbeschadet.
C:   Der Held überwindet genau vier Wassergräben und genau eine Brücke unbeschadet.

(2)  Wie viele Wassergräben in diesem Spielabschnitt werden im Schnitt bei 10 Spielen nicht unbeschadet überwunden?

(3)  Wie groß ist die Wahrscheinlichkeit, das der Held in diesem Spielabschnitt an höchstens einem Hindernis scheitert?

(4)  Wie groß ist die Wahrscheinlichkeit, dass bei 5 Spielen insgesamt höchstens ein Wassergraben nicht bewältigt wird?  

Hallöchen.

Ich hab im Moment eine Aufgabe, die mir ziemliches Kopfzerbrechen bereitet und ich würde mich sehr freuen, wenn mir jemand bei der Lösung dieser Aufgabe behilflich wäre. Im Grund finde, ich Binomialverteilung nicht allzu schwer. Doch hier weiß ich nicht mehr weiter.

U = Unbeschadet, B = beschadet  

8 Wassergräben   U = 0,4      B = 0,6
2 Wassergräben   U = 0,6      B = 0,4

(1)

A:   --> ich bin davon ausgegangen, dass wenn er die wassergräben unbeschadet übersteht, die Brücke nicht übersteht.

[mm] \pmat{8 \\ 8} [/mm] x [mm] 0,4^4 [/mm] x [mm] 0,6^0 [/mm]  +  [mm] \pmat{2 \\ 2} [/mm] x [mm] 0,4^2 [/mm] x [mm] 0.6^0 [/mm] = 0,1607

oder

[mm] 0,4^8 [/mm] x [mm] 0,4^2 [/mm] = 0,0001

welches ergebnis ist richtig? kann man einzelne binomialverteilungen addieren?

B:  festgesetzte "plätze" --> keine binomialverteilung

[mm] 0,4^4 [/mm] x [mm] 0,6^4 [/mm] x 0,6 x 0,4 = 0,0008

C:  n= 8     k= 4    p = 0,4           n = 2     k = 1      p = 0,6                

[mm] \pmat{8 \\ 4} [/mm] x [mm] 0,4^4 [/mm] x [mm] 0,6^4 [/mm]  +  [mm] \pmat{2 \\ 1} [/mm] x 0,6 x 0,4 = 0,7122

(2)

wenn ich 10 spiele habe und in jedem spiel 8 wassergräben, wie komme ich dann auf die anzahl der nicht unbeschadet überwunden wassergräben? ich hab da absolut keine idee.

(3)

P1 (x  [mm] \ge [/mm] 1) = 0,0085        n = 8   p = 0,6   k1 = 0   k2 = 1
P2 (x  [mm] \ge [/mm] 1) = 0,84            n = 2   p = 0,4   k1 = 0   k2 = 1
--> laut eines taschenrechnerprogramms

0,0085 + 0,84  =  0,8485

(4)
muss ich das ergebnis aus der aufgabe (3) dann mal 5 nehmen, weil es 5 spiele sind?

Selbst meine Lösungen finde ich ziemlich unglaubwürdig, zumindestens kann ich sie mir nicht richtig vorstellen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Fr 28.04.2006
Autor: Zwerglein

Hi, popati,


> (1)
>
> A:   --> ich bin davon ausgegangen, dass wenn er die
> wassergräben unbeschadet übersteht, die Brücke nicht
> übersteht.

Da von den Brücken bei a) nicht die Rede ist, werden die gar nicht berücksichtigt, will heißen: Ob er die Brücken schafft oder nicht, ist bei a) wurscht!

>  
> [mm]\pmat{8 \\ 8}[/mm] x [mm]0,4^4[/mm] x [mm]0,6^0[/mm]  +  [mm]\pmat{2 \\ 2}[/mm] x [mm]0,4^2[/mm] x [mm]0.6^0[/mm] = 0,1607
>  
> oder
>
> [mm]0,4^8[/mm] x [mm]0,4^2[/mm] = 0,0001
>
> welches ergebnis ist richtig? kann man einzelne
> binomialverteilungen addieren?

Dein erster Vorschlag ist falsch, Addition hier auf keinen Fall angebracht!
Der zweite Vorschlag ist teilweise OK, aber siehe meine Bemerkung von oben!
Richtig ist daher:
P("alle 8 Gräben werden überwunden") = [mm] 0,4^{8} [/mm] = 0,000655.

>
> B:  festgesetzte "plätze" --> keine binomialverteilung
>
> [mm]0,4^4[/mm] x [mm]0,6^4[/mm] x 0,6 x 0,4 = 0,0008

Das stimmt!


> C:  n= 8     k= 4    p = 0,4           n = 2     k = 1      
> p = 0,6                
>
> [mm]\pmat{8 \\ 4}[/mm] x [mm]0,4^4[/mm] x [mm]0,6^4[/mm]  +  [mm]\pmat{2 \\ 1}[/mm] x 0,6 x 0,4
> = 0,7122

Keine Addition der Wahrscheinlichkeiten, sondern MULTIPLIKATION!
Denk' Dir das Ganze in einem Baum angeordnet (den Du natürlich wegen seiner Größe nicht zeichnen kannst!): Pfadregel!

Also: [mm] \pmat{8 \\ 4} [/mm] x [mm] 0,4^4 [/mm] x [mm] 0,6^4 \red{\times} \pmat{2 \\ 1} [/mm] x 0,6 x 0,4
  

> (2)
>
> wenn ich 10 spiele habe und in jedem spiel 8 wassergräben,
> wie komme ich dann auf die anzahl der nicht unbeschadet
> überwunden wassergräben? ich hab da absolut keine idee.

Wieviele Wassergräben werden im Schnitt bei 1 Spiel nicht unbeschadet überwunden? Erwartungswert: 0,6*8 = 4,8.

Wie viele demnach bei 10 Spielen? (Also bei insgesamt 80 Wassergräben!)

> (3)
>
> P1 (x  [mm]\ge[/mm] 1) = 0,0085        n = 8   p = 0,6   k1 = 0   k2
> = 1
> P2 (x  [mm]\ge[/mm] 1) = 0,84            n = 2   p = 0,4   k1 = 0  
> k2 = 1
> --> laut eines taschenrechnerprogramms
>  
> 0,0085 + 0,84  =  0,8485

Kommt Dir das nicht selbst ein bisschen viel vor?

Also: Dein Ereignis tritt ein, wenn der Held an
- genau 1 Wassergraben, aber keiner Brücke,
- keinem Wassergraben und genau 1 Brücke oder
- keinem Wassergraben und keiner Brücke scheitert.

Die jeweiligen Wahrscheinlichkeiten berechnest Du wie bei 1c) und zählst sie am Schluss zusammen!

>
> (4)
> muss ich das ergebnis aus der aufgabe (3) dann mal 5
> nehmen, weil es 5 spiele sind?
>

Die Frage 4) ist etwas zweideutig gestellt. Ich verstehe sie so, dass man von den 5*8 = 40 Wassergräben, die man bei 5 Spielen überwinden muss, höchstens einen nicht unbeschadet schafft.
Du hättest demnach eine Binomialverteilung
mit n=40, p=0,4 und k= sowie k=1.
(Also Summe zweier Wahrscheinlichkeiten: P(k=0) + P(k=1).

mfG!
Zwerglein

Bezug
                
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Sa 29.04.2006
Autor: popati

vielen, vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de