www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Binomialverteilung
Binomialverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 Mi 20.06.2007
Autor: Frank.N.Furter

Hallo, ich hab eine einfache Frage zur Stochastik, die aber leider sehr dringend ist.

Ich habe die Binomialverteilte ZV mit p = 0.3, n = 100 habe und möchte z. B. wissen für welches N [mm] \in \IN [/mm] gilt:

P (X > N) [mm] \le [/mm] 0.05.

Ich soll eine Tabelle verwenden, in der die Werte P(X [mm] \le [/mm] 0), P(X [mm] \le [/mm] 1),  P(X [mm] \le [/mm] 2), usw. stehen.

Also so wie die Seite 6 dieses PDF-Datei:
http://www.informatik.uni-bremen.de/~shahn/mathematik/stochastik/binomial_tabelle.PDF

Ich will nun wissen, wie ich mit dieser Tabelle das N finden kann.

Ich habe mir gedacht, ich suche die Tabelle ab, bis ich ein N finde für das gilt:

P (X [mm] \le [/mm] N) > 0.95.

Ist das richtig? Besonders unsicher bin ich mir darin, ob es >0.95 oder [mm] \ge [/mm] 0.95 heißen muss

Hoffentlich weiß jemand Rat, VIELEN DANK!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:53 Mi 20.06.2007
Autor: rabilein1

Ich habe mal einen Blick auf die von dir genannte pdf-Datei geworfen.

Da ist alles vorhanden:
Du hast die Wahrscheinlichkeit p für das Einzel-Ereginis.
Dann hast du die Anzahl n der Ereignisse.
Und du hast die Anzahl k der "Treffer".

Nun kannst du in der Tabelle ablesen, wie groß die Wahrscheinlichkeit ist, dass du genau k Treffer hast.

In der "Kumuliert-Tabelle" steht dann die Wahrscheinlichkeit, dass es  höchstens k Treffer sind.

Wenn du unsicher bist, wie man die "Kumuliert-Tabelle" interpretiert, dann rechne doch einfach zusammen:
Wahrscheinlichkeit, dass 0 Treffer PLUS Wahrscheinlichkeit, dass 1 Treffer PLUS Wahrscheinlichkeit, dass 2 Treffer ... dann müsstest du diesen Wert (die Summe) in der "Kumuliert-Tabelle" finden. Dann siehst du auch, ob du < oder [mm] \le [/mm] nehmen musst.


Bezug
                
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Sa 23.06.2007
Autor: Frank.N.Furter

Hallo,

danke für die Antwort.

Das Problem war, dass ich nur die kumulierten-Wahrscheinlichkeiten-Tabelle benutzen durfte.

Wenn es interessiert, wie es richtig ist:

P(X > N) [mm] \leq [/mm] 0.05 [mm] \Rightarrow [/mm]
1 - P(X [mm] \leq [/mm] N) [mm] \leq [/mm] 0.05 [mm] \Rightarrow [/mm]
- P(X [mm] \leq [/mm] N) [mm] \leq [/mm] -0.95
P(X [mm] \leq [/mm] N) [mm] \geq [/mm] 0.95

eigentlich ganz einfach.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de