www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Binomialverteilung
Binomialverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 Mo 10.10.2011
Autor: Mathics

Aufgabe
Ein Würfel wird 49-mal geworfen; dabei tritt 6-mal Augenzahl 1 auf. Wie viele Pfade im Baumdiagramm (mit insgesamt 2^49 = ca. 5*10^14 Pfaden) gehören zum Ergebnis 6-Mal Augenzahl 1?

Hallo,

Es gibt (49*48*47*46*45*44)/(6*5*4*3*2*1) = 13983816 Pfade.

Ist das so richtig?

Danke.


LG

        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mo 10.10.2011
Autor: reverend

Hallo Mathics,

wieder: heißt das "genau 6-mal Augenzahl 1"?

> Ein Würfel wird 49-mal geworfen; dabei tritt 6-mal
> Augenzahl 1 auf. Wie viele Pfade im Baumdiagramm (mit
> insgesamt 2^49 = ca. 5*10^14 Pfaden) gehören zum Ergebnis
> 6-Mal Augenzahl 1?

Wieso sollte das Baumdiagramm nur [mm] 2^{49} [/mm] Pfade haben? Die Würfe sind unabhängig, es sollte also [mm] 6^{49} [/mm] Pfade geben.

>  Hallo,
>  
> Es gibt (49*48*47*46*45*44)/(6*5*4*3*2*1) = 13983816
> Pfade.
>  
> Ist das so richtig?

Ich denke nein. Bei vier Würfen, wovon genau 2mal die 1, gibt es u.a. folgende Pfade:

1163, 1613, 1315, 1214, 4211, 4311, 4511 und insgesamt 209 weitere Pfade.

Grüße
reverend


Bezug
                
Bezug
Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Mo 10.10.2011
Autor: Mathics

Hallo,

die 2^49 hat damit zu tun, dass es 2 Möglichkeiten gibt (entweder 1 oder keine 1 = Bernoulli-Experiment/Kette).

Ich bin eigentlich nach dem Schema in unserem Buch vorgegangen.

Hier habe ich sie nochmal eingescannt:

http://imageshack.us/photo/my-images/707/ma0001.jpg/
http://imageshack.us/photo/my-images/801/ma0002.jpg/

Ist das jetzt nachvollziehbar?


Danke.

LG

Bezug
                        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mo 10.10.2011
Autor: reverend

Hallo nochmal,

> die 2^49 hat damit zu tun, dass es 2 Möglichkeiten gibt
> (entweder 1 oder keine 1 = Bernoulli-Experiment/Kette).
>  
> Ich bin eigentlich nach dem Schema in unserem Buch
> vorgegangen.
>  
> Hier habe ich sie nochmal eingescannt:
>
> http://imageshack.us/photo/my-images/707/ma0001.jpg/
>  http://imageshack.us/photo/my-images/801/ma0002.jpg/
>  
> Ist das jetzt nachvollziehbar?

Ja, ist es.
Dann stimmt auch Deine Lösung, nämlich [mm] \vektor{49\\6} [/mm] Pfade.

Grüße
reverend


Bezug
        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Mo 10.10.2011
Autor: Blech

Hi,

also solange Du bei jedem Wurf nur die Möglichkeiten "1" und "nicht 1" betrachtest (d.h. die 2^49 stand in der Angabe), dann stimmt es. Wir nehmen an, daß genau 6 mal "1" und 43 mal "nicht 1" auftritt, also gibt es [mm] ${49\choose 6}$ [/mm] Möglichkeiten, die Einsen in der Serie der 49 Würfe unterzubringen.


Allerdings mußt Du da bedenken, daß nicht alle Pfade mit gleicher Wkeit auftreten. (weil Du bei jeder Verzweigung mit Wkeit 5/6 eine "nicht 1" würfelst) Damit kannst Du durch reines Abzählen der Pfade hier auch keine Wkeiten berechnen.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de