www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Binomische Formel
Binomische Formel < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomische Formel: Vereinfachung mit bin. Formel
Status: (Frage) beantwortet Status 
Datum: 18:16 Di 20.09.2005
Autor: MarcoK000

[mm] (a^m [/mm] * [mm] y^{k+3} [/mm] - [mm] a^{m-2} [/mm] * [mm] y^{k+1}) [/mm] / [mm] (a^m [/mm] * [mm] y^{k+1} [/mm] * [mm] a^{m-1} [/mm] * [mm] y^k) [/mm]

Das ist die Aufgabe. Es soll nun mit Hilfe der binomischen Formel vereinfach werden. Das Ergebnis kenne ich schon. Mich würde hier mehr der Lösungsweg interessieren.

Wenn jemand von euch Lust und Zeit hat wäre ich echt dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomische Formel: Aufgabenstellung richtig?
Status: (Antwort) fertig Status 
Datum: 18:33 Di 20.09.2005
Autor: Loddar

Hallo Marco,

[willkommenmr] !!


Kann es sein, dass in Deiner Aufgabenstellung ein Tippfehler drin ist?

Und zwar genauer: ein Rechenzeichen im Nenner. Da gehört doch in die Mitte bestimmt ein + oder ein - , oder?

[mm]\bruch{a^m*y^{k+3}-a^{m-2}*y^{k+1}}{a^m*y^{k+1} \red{\pm} \ a^{m-1}*y^k}[/mm]


Ansonsten beginnt man hier am besten mit Ausklammern. Im Zähler z.B.  klammert man [mm] $a^{m-2}*y^{k+1}$ [/mm] aus und es verbleibt:

[mm] $a^{m-2}*y^{k+1}*\left(a^2*y^2-1\right)$ [/mm]


Diese Klammer kann dann noch mit der 3. binomischen Formel auseinander gezogen werden zu: [mm] $\left(a^2*y^2-1\right) [/mm] \ = \ (a*y+1)*(a*y-1)$

Ähnlich dann im Nenner vorgehen und anschließend kürzen.


Gruß
Loddar


Bezug
                
Bezug
Binomische Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Di 20.09.2005
Autor: MarcoK000

Also das was du für den Zähler hast ist genau das was rauskommen sollte.
Es wurde alles richtig geschrieben. Hab es extra nochmal überprüft.

Die Lösung sollte, laut Lösungsblatt(bis jetzt alles richtig) folgende sein:

[mm] ((a*y)^2 [/mm] - 1) / [mm] (a^{m+1} [/mm] * [mm] y^k) [/mm]

Bezug
                        
Bezug
Binomische Formel: Nenner klar?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:09 Di 20.09.2005
Autor: Loddar

Hallo Marco!


Ist der Rest (sprich: der Nenner) dann auch klar?


Hier wurde dann per MBPotenzgesetz zerlegt:

[mm] $\blue{a^m}*y^{k+1}*a^{m-1}*y^k [/mm] \ = \ [mm] \blue{a^{m-2}*a^2}*y^{k+1}*a^{m-1}*y^k$ [/mm]

Dann kürzen durch [mm] $a^{m-2}*y^{k+1}$ [/mm] und fertig ...


Gruß
Loddar


Bezug
                                
Bezug
Binomische Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 Di 20.09.2005
Autor: MarcoK000

Der Rest ist dann klar.
Vielen Dank !!!

das ist ja wahnsinnig schnell gegangen.  :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de