www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Binomischer Lehrsatz
Binomischer Lehrsatz < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomischer Lehrsatz: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 23:59 Sa 05.12.2015
Autor: SinistresFlagellum

Der Binomialkoeffizient [mm] \vektor{m \\ n} [/mm] würde ja kombinatorisch gesehen bedeuten, wieviele Möglichkeiten es gibt aus m Objekten n Objekte auszuwählen.

Ich verstehe nicht ganz wieso man nun sagen kann, dass beispielsweise bei dem Term (a + [mm] b)^{5} [/mm] genau [mm] \vektor{5 \\ 2} [/mm] mal der Ausdruck [mm] a^{3}b^{2} [/mm] vorkommt.



        
Bezug
Binomischer Lehrsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 So 06.12.2015
Autor: DieAcht

Hallo SinistresFlagellum!


Danke, mir geht es auch gut! ;-)


Nach dem binomischen Lehrsatz gilt

      [mm] $(a+b)^5=\sum_{k=0}^{5}\binom{5}{k}*a^k*b^{5-k}$. [/mm]

Den Ausdruck [mm] $a^3*b^2\$ [/mm] erhalten wir nur für [mm] $k=3\$ [/mm] und zwar genau [mm] $10=\binom{5}{3}=\binom{5}{5-3}=\binom{5}{2}$ [/mm] Mal.

Insgesamt gilt

      [mm] $(a+b)^5=a^5+5*a^4*b+\blue{10*a^3*b^2}+10*a^2*b^3+5*a*b^4+b^5$. [/mm]


Gruß
DieAcht

Bezug
                
Bezug
Binomischer Lehrsatz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:35 So 06.12.2015
Autor: SinistresFlagellum


> Hallo SinistresFlagellum!
>  
>
> Danke, mir geht es auch gut! ;-)
>  
>
> Nach dem binomischen Lehrsatz gilt
>  
> [mm](a+b)^5=\sum_{k=0}^{5}\binom{5}{k}*a^k*b^{5-k}[/mm].
>  
> Den Ausdruck [mm]a^3*b^2\[/mm] erhalten wir nur für [mm]k=3\[/mm] und zwar
> genau [mm]10=\binom{5}{3}[/mm]-mal.
>  
> Insgesamt gilt
>  
> [mm](a+b)^5=a^5+5*a^4*b+\blue{10*a^3*b^2}+10*a^2*b^3+5*a*b^4+b^5[/mm].
>  
>
> Gruß
>  DieAcht

......

Ja, mir ist bewusst, was der Lehrsatz aussagt und ich ich ihn anweden kann.

Ich verstehe nur das kombinatorische Warum des Ganzen nicht.

Warum kommt unser Term [mm] a^{3}b^{2} [/mm] genau so oft vor wie es Möglichkeiten gibt aus 5 Objekten genau 2 (bzw. 3) Objekte auszuwählen?

Ich erkenne, dass die beiden Exponenten unseres Terms [mm] a^{3}b^{2} [/mm] das n und der höchste Exponent, also 5 bei [mm] (a+b)^{5}, [/mm] das m vorgeben könnten bei [mm] \vektor{m \\ n}. [/mm]

Bezug
        
Bezug
Binomischer Lehrsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 So 06.12.2015
Autor: UniversellesObjekt

Was passiert wenn du das Produkt $(a+b)(a+b)(a+b)(a+b)(a+b)$ ausmultiplizierst? Du bekommst ganz viele Summanden, welche jeweils ein Produkt aus fünf Faktoren sind, bestehend aus $a$'s und $b$'s. Zum Beispiel ist [mm] $a^3b^2$ [/mm] ein solches Produkt. Beachte, dass der Exponent von $b$ immer schon durch den von $a$ festgelegt wird, da ihre Summe 5 sein muss. Wenn wir uns fragen, wie oft der Summand [mm] $a^3b^2$ [/mm] vorkommt, ist das also äquivalent zu der Frage, auf wie viele Weisen man fünf Faktoren so wählen kann, dass $3$mal $a$ vorkommt. Da gibt es [mm] $\binom{5}{3}$ [/mm] Möglichkeiten.

Kombinatorisch sieht man auch die Multinomialformel sofort ein:

[mm] $(a_1+\dots+a_n)^m=\sum_{k_1+\dots+k_n=m}\binom{m}{k_1,\dots,k_n}a_1^{k_1}\cdots a_n^{k_n}$. [/mm] Ich finde diese etwas allgemeinere Formel ist kombinatorisch sogar leichter nachzuvollziehen, weil sie "symmetrisch" in den [mm] $a_i$ [/mm] ist.

Natürlich kann man auch die binomische Formel symmetrisch aufschreiben:

[mm] $(a+b)^m=\sum_{j+k=n}\frac{n!}{j!*k!}a^jb^k$. [/mm]

Häufig kann man damit sogar besser arbeiten.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de