www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Biot Savart
Biot Savart < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Biot Savart: Vektoren korrekt?
Status: (Frage) beantwortet Status 
Datum: 11:55 Do 15.07.2010
Autor: FrankZane

Aufgabe
Gegeben ist die rechts abgebildete Anordnung mit dem Winkel
α in der x-y-Ebene. Auf dem dargestellten Leiterst¨uck der L¨ange
2L fließt der Strom I.
a)  Berechnen Sie mit dem Biot-Savart-Gesetz den Beitrag dieses
Leiterst¨ucks zur magnetischen Flussdichte
~
B P im Punkt P =
(0, 0, z 0 ) auf der hier nicht dargestellten z-Achse, mit z 0 > 0.

http://www.bilder-hochladen.net/files/eom3-7-jpg-nb.html

Hallo, ich bin gerade dabei eine Aufgabe zu Biot Savart zu rechnen allerdings bin ich mir unsicher, ob meine Vektoren richtig sind?

für dl' habe ich: [mm] [cos(\alpha)*dlx; sin(\alpha)*dly;0] [/mm]
für r(z0) habe ich: (0,0,z0)
und r' = dl'

Kann mir jemand sagen, ob das soweit richtig ist, damit ich das mal durchrechnen kann?

Grüße

        
Bezug
Biot Savart: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Fr 16.07.2010
Autor: leduart

Hallo
was soll denn dlx sein? mit einfach dl ists richtitig
gruss leduart

Bezug
                
Bezug
Biot Savart: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:31 Fr 16.07.2010
Autor: FrankZane

Hallo,
das "x" sollte eigentlich nur ein Indize darstellen, aber ich wusste nicht ob/wie man das hier tiefstellen kann.
Nagut, dann werde ich das erstmal durchrechnen.

Bezug
                        
Bezug
Biot Savart: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Fr 16.07.2010
Autor: FrankZane

Kann mir bis hierher mal jemand sagen, ob das richtig ausschaut, das wäre ganz nice ;)

[mm] B(z_o) [/mm] = [mm] \mu0*I/4\pi *\integral [/mm] dl X [mm] (r[z_0]-r') [/mm] / [mm] |r[z_0]-r'^3| [/mm]

r(zo)-r' = [mm] \vektor{0 \\ 0\\z_0} [/mm] - [mm] \vektor{cos(\alpha)dl \\ \sin(\alpha)dl\\0} [/mm] = [mm] \vektor{-cos(\alpha)dl \\ -sin(\alpha)dl\\z_0} [/mm]

dl X  [mm] (r(z_0)-r') [/mm] = [mm] \vektor{cos(\alpha)dl \\ \sin(\alpha)dl\\0} [/mm] X [mm] \vektor{-cos(\alpha)dl \\ -sin(\alpha)dl\\z_0} [/mm] = [mm] \vektor{z_0sin(\alpha)dl-0 \\ 0 - z_0 * cos(\alpha)dl\\cos(\alpha)dl*(-sin(\alpha)dl-sin(\alpha)dl) *(-cos(\alpha)dl)} [/mm] = [mm] \vektor{z_0sin(\alpha)dl \\ - z_0 * cos(\alpha)dl\\0} [/mm]

-> [mm] B(z_o) [/mm] = [mm] \mu0*I/4\pi [/mm] * [mm] \vektor{z_0sin(\alpha)dl \\ - z_0 * cos(\alpha)dl\\0} \integral_{L1}^{L2} [/mm] * dl [mm] /\wurzel{cos^2(\alpha) dl^2 + sin^2(\alpha)dl^2 +z_0^2} [/mm]


Bezug
                                
Bezug
Biot Savart: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Sa 17.07.2010
Autor: leduart

Hallo
Ich komm mit dem , was du da machst nicht zurecht.
da steht dl im Nenner? was hat dl in r' zu suchen?
schreib vielleicht erstmal auf, was rauskommt, wenn L in x- Richtung, oder y- Richtung fliesst, wenn es dann unter [mm] \alpha [/mm] fliesst, ndert sich doch nur der Winkel von B eben auch um [mm] \alpha. [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de