Blumenthal 0-1-Gesetz < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei $f(x)$ eine Funktion mit [mm] $f(x)\var{>0}$ [/mm] fuer alle [mm] $x>\var0$. [/mm] Zeige mit Blumenthal's 0-1-Gesetz:
[mm] [center]$\limsup_{t\downarrow0}\frac{B_t}{f(t)}=c,\quad P_0\text{-a.s.},$[/center]
[/mm]
mit einer Konstanten [mm] $c\in[0,\infty]$. [/mm] |
Obige Aufgabe stammt aus dem Buch Durrett: Stochastic Calculus und ich so richtig verstehe ich das wohl nicht...
Blumenthal's 0-1-Gesetz hat im Buch folgende Form:
Aus [mm] $A\in\mathcal F_0^+$ [/mm] folgt [mm] $P_x(A)={0,1}$ [/mm] fuer alle [mm] $x\in\mathbb [/mm] R$.
Ansonsten ist, wie ueblich, [mm] $(B_t)_{t\ge0}$ [/mm] eine Brownsche Bewegung, die zugehoerige natuerliche Filtration [mm] $(\mathcal F_t)_{t\ge0}$ [/mm] ist definiert durch [mm] $\mathcal F_t=\sigma(B_s\colon 0\le s\le [/mm] t)$ und [mm] $\mathcal F_t^+:=\bigcap_{s>t}\mathcal F_s$ [/mm] die ist die entsprechende rechtsstetige Filtration. [mm] $P_0$ [/mm] ist das Mass, fuer das [mm] $P(B_0=0)=1$ [/mm] gilt.
So, nun ist [mm] $\limsup_{t\downarrow0}\frac{B_t}{f(t)}=c$ [/mm] ja [mm] $\mathcal F_0^+$-messbar, [/mm] also gilt:
[mm] [center]$P_0\left(\limsup_{t\downarrow0}\frac{B_t}{f(t)}=c\right)\in\{0,1\}$.[/center]
[/mm]
Doch wie folgt nun [mm] $P_0(\dots)=1$?
[/mm]
So, ich hoffe, es stimmt alles soweit. Die Antwort ist sicher sehr einfach, auf alle Faelle schonmal vielen Dank.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:50 Fr 22.07.2011 | Autor: | Mr.Teutone |
Hallo, ich bin noch an der obigen Frage interessiert. Wenn evtl. etwas nicht zusammen passt oder ich mich unverständlich ausgedrückt habe, dann sagt Bescheid.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:41 Mo 01.08.2011 | Autor: | rrgg |
Das muss ja für jedes c [mm] \ge [/mm] 0 gelten [mm] \rightarrow [/mm] muss es ein c mit der Wahrscheinlichkeit 1 geben. (Das muss man aber noch zeigen (geht mit einem Approximationsargument))
c [mm] \ge [/mm] 0 gilt ja weil es zumindest eine Folge mit [mm] B_t [/mm] = 0 gibt. (fast sicher natürlich)
|
|
|
|