www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Bogenlänge
Bogenlänge < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bogenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Di 31.10.2006
Autor: Hubert580

Ich versteh das mit der Formel für die Bogenlänge nicht so ganz. Also mir ist schon klar, dass man zunächst einmal die Formel mit [mm] \wurzel{1+f'(x)^2} [/mm] benötigt. Allerdings weiß ich nicht genau wie ich dann weiter machen soll.

Also mal zu einem sehr einfachen Beispiel, wenn man die Fkt. -0,5x+1 bildet man die Ableitung und setzt es in die Formel ein und erhält dann wurzel aus1,25, aber wie macht man dann weiter?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Bogenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Di 31.10.2006
Autor: leduart

Hallo Hubert
> Ich versteh das mit der Formel für die Bogenlänge nicht so
> ganz. Also mir ist schon klar, dass man zunächst einmal die
> Formel mit [mm]\wurzel{1+f'(x)^2}[/mm] benötigt. Allerdings weiß ich
> nicht genau wie ich dann weiter machen soll.

Wieso ist dir das klar? was ist denn   [mm]\wurzel{1+f'(x)^2}[/mm]
Wenn du das Verstanden hast, dann ist doch [mm]\Delta x*\wurzel{1+f'(x)^2}[/mm] die Länge eines winzigen Tangentenstückchens .
alle Tangentenstückchen aufsummiert ergibt bei [mm] \Delta [/mm] x gegen 0 , die Länge des Bogens. Unendlich viele unendlich kleine Stücke addieren heisst das Integral bilden. d.h. [mm] \integral_{a}^{b}{\wurzel{1+f'(x)^2}dx} [/mm] ergibt die Bogenlänge zwischen a und b.

> Also mal zu einem sehr einfachen Beispiel, wenn man die
> Fkt. -0,5x+1 bildet man die Ableitung und setzt es in die
> Formel ein und erhält dann wurzel aus1,25, aber wie macht
> man dann weiter?

Die "Bogenlänge" einer Strecke  so auszurechnen wär zwar dumm, aber wenigstens kannst du damit feststellen, dass auch hier das umständliche Verfahren existiert.
[mm] \integral_{a}^{b}{\wurzel{1.25} dx} =b*\wurzel{1.25}-a*\wurzel{1.25} [/mm]
also etwa die Strecke, die aus der Geraden zw. y- und x achse ausgeschnitten wird; a=0 b=2 ist [mm] 4*\wurzel{1.25}=\wurzel{5}. [/mm] Das kannst du auch mit Pythagoras.
Gruss leduart

Bezug
                
Bezug
Bogenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Di 31.10.2006
Autor: Hubert580

Also muss ich zu wurzel aus 1,25 keine Stammfunktion finden??

Bezug
                        
Bezug
Bogenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Di 31.10.2006
Autor: Herby

Hi,


doch die bildest du:


[mm] \integral_a^b{\wurzel{1,25}\ dx}=[\wurzel{1,25}*x]_a^b=b*\wurzel{1,25}-a*\wurzel{1,25} [/mm]



du hattest nur kein x mehr unter der Wurzel, weil in der Ableitung kein x mehr vorkam. Das ändert sich natürlich, wenn deine Funktion z.B. f(x)=sin(x) lauten würde.


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de