www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Bogenlänge
Bogenlänge < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bogenlänge: Rechenfehler?
Status: (Frage) beantwortet Status 
Datum: 19:30 Mi 30.07.2008
Autor: BlubbBlubb

Aufgabe
1a) Man berechne die Länge der Kurve, die durch die Koordinatenfunktionen

[mm] x(t)=e^{-3t}sin(2t) [/mm]

[mm] y(t)=e^{-3t}cos(2t) [/mm]

für t [mm] \in [0,\pi] [/mm]

gegeben ist.  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

meine vorgehensweise:

[mm] L=\integral_{a}^{b}{\wurzel{x(t)'^2+y(t)'^2} dt} [/mm]

[mm] x'(t)=-3e^{-3t}sin(2t)+2e^{-3t}cos(2t)=e^{-3t}*(2cos(2t)-3sin(2t)) [/mm]

[mm] y'(t)=-3e^{-3t}cos(2t)+2e^{-3t}(-sin(2t))=e^{-3t}*(-3cos(2t)-2sin(2t)) [/mm]

[mm] x'(t)^2+y'(t)^2=e^{-6t}*(4cos^2(2t)-12sin(2t)cos(2t)+9sin^2(2t))+e^{-6t}*(9cos^2(2t)+12sin(2t)cos(2t)+4sin^2(2t))=e^{-6t}*(13cos^2(2t)+13sin^2(2t)) [/mm]

[mm] \wurzel{ x'(t)^2+y'(t)^2}=e^{-3t}*\wurzel{13} [/mm]

[mm] L=\wurzel{13}\integral_{0}^{\pi}{e^{-3t}dt} [/mm]
[mm] =\bruch{\wurzel{13}}{3}*(1-e^{-3\pi}) [/mm]

das wäre mein lösungsvorschlag ist das richtig?

_________________________________________________________

nun hab ich aber auch eine frage zur berechnung von y'(t):

wenn ich anstellen von:
[mm] y'(t)=e^{-3t}*(-3cos(2t)-2sin(2t)) [/mm]

folgendes rechne:
[mm] y'(t)=-e^{-3t}*(3cos(2t)+2sin(2t)) [/mm]

dann bekomme ich für [mm] x'(t)^2+y'(t)^2: [/mm]

[mm] x'(t)^2+y'(t)^2=e^{-6t}*(4cos^2(2t)-12sin(2t)cos(2t)+9sin^2(2t))-e^{6t}*(9cos^2(2t)+12sin(2t)cos(2t)+4sin^2(2t))=e^{-6t}*(-5cos^2(2t)-24sin(2t)cos(2t)+5sin^2(2t)) [/mm]

und wie man davon die wurzel ziehen soll das weiß ich nicht, das geht in meinen augen nicht wirklich gut.

jetzt stellt sich mir die frage hab ich einen rechenfehler gemacht, oder hab ich richtig gerechnet, aber es kommt einfach so ein unschöner term heraus?

        
Bezug
Bogenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Mi 30.07.2008
Autor: schachuzipus

Hallo BlubbBlubb,

> 1a) Man berechne die Länge der Kurve, die durch die
> Koordinatenfunktionen
>  
> [mm]x(t)=e^{-3t}sin(2t)[/mm]
>  
> [mm]y(t)=e^{-3t}cos(2t)[/mm]
>  
> für t [mm]\in [0,\pi][/mm]
>  
> gegeben ist.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> meine vorgehensweise:
>  
> [mm]L=\integral_{a}^{b}{\wurzel{x(t)'^2+y(t)'^2} dt}[/mm]
>  
> [mm]x'(t)=-3e^{-3t}sin(2t)+2e^{-3t}cos(2t)=e^{-3t}*(2cos(2t)-3sin(2t))[/mm]
>  
> [mm]y'(t)=-3e^{-3t}cos(2t)+2e^{-3t}(-sin(2t))=e^{-3t}*(-3cos(2t)-2sin(2t))[/mm]
>  
> [mm]x'(t)^2+y'(t)^2=e^{-6t}*(4cos^2(2t)-12sin(2t)cos(2t)+9sin^2(2t))+e^{-6t}*(9cos^2(2t)+12sin(2t)cos(2t)+4sin^2(2t))=e^{-6t}*(13cos^2(2t)+13sin^2(2t))[/mm]
>  
> [mm]\wurzel{ x'(t)^2+y'(t)^2}=e^{-3t}*\wurzel{13}[/mm] [ok]
>
> [mm]L=\wurzel{13}\integral_{0}^{\pi}{e^{-3t}dt}[/mm]
>  [mm]=\bruch{\wurzel{13}}{3}*(1-e^{-3\pi})[/mm] [daumenhoch]
>  
> das wäre mein lösungsvorschlag ist das richtig?

Ja, alles bestens!

>
> _________________________________________________________
>  
> nun hab ich aber auch eine frage zur berechnung von y'(t):
>  
> wenn ich anstellen von:
>  [mm]y'(t)=e^{-3t}*(-3cos(2t)-2sin(2t))[/mm]
>  
> folgendes rechne:
>  [mm]y'(t)=-e^{-3t}*(3cos(2t)+2sin(2t))[/mm]
>  
> dann bekomme ich für [mm]x'(t)^2+y'(t)^2:[/mm]
>  
> [mm]x'(t)^2+y'(t)^2=e^{-6t}*(4cos^2(2t)-12sin(2t)cos(2t)+9sin^2(2t)) \ \red{-} \ e^{6t}*(9cos^2(2t)+12sin(2t)cos(2t)+4sin^2(2t))=e^{-6t}*(-5cos^2(2t)-24sin(2t)cos(2t)+5sin^2(2t))[/mm]

Das rot markierte Minus ist falsch, du quadrierst ja als ersten Faktor von $y'(t)$ das [mm] $-e^{-3t}$, [/mm] das gibt [mm] $\left(-e^{-3t}\right)^2=\blue{+}e^{-6t}$ [/mm]

Dann hebt sich wieder alles brav weg, wie beim ersten Ansatz.

Es müssen ja auch beide Ansätze zum selben Ergebnis führen, es sind ja dieselben Ausdrücke für $y'(t)$ ;-)

>  
> und wie man davon die wurzel ziehen soll das weiß ich
> nicht, das geht in meinen augen nicht wirklich gut.
>  
> jetzt stellt sich mir die frage hab ich einen rechenfehler
> gemacht, oder hab ich richtig gerechnet, aber es kommt
> einfach so ein unschöner term heraus?

In der Tat, dank dem VZF ;-)

LG

schachuzipus


Bezug
                
Bezug
Bogenlänge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Mi 30.07.2008
Autor: BlubbBlubb

ja stimmt jetzt wo dus sagst seh ich den fehler :P , danke fürs durchschauen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de