www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Bolzano-Weierstraß,Grenzwert
Bolzano-Weierstraß,Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bolzano-Weierstraß,Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Mi 12.11.2014
Autor: sissile

Aufgabe
Jede beschränkte Folge von reellen Nummern hat einen Häufungswert.

Ich verstehe den beweis, nur der Schluß macht mir Probleme warum der konstruierte Punkt nur ein Häufungswert und kein Grenzwert ist.
Unsere Definition für Häufungswert:
[mm] \forall \epsilon>0 \forall [/mm] N [mm] \in \IN \exists [/mm] m [mm] \ge [/mm] N: [mm] |a_m-a|<\epsilon [/mm]

Der Beweis in eigenen Worten widergegeben:

-) Sei [mm] (a_n) [/mm] eine beliebige beschränkte Folge: [mm] \exists [/mm] K [mm] \in \IR [/mm] : [mm] |a_n| \le [/mm] K [mm] \forall [/mm] n [mm] \in \IN [/mm]

-) Konstruiere Menge [mm] A=\{x \in \IR: a_n >x \mbox{für endlich viele }n\} [/mm]
A [mm] \not=\emptyset [/mm] da K [mm] \in [/mm] A, weil ja rechts von K endlich viele, in dem Fall keine, Folgenglieder liegen.
A ist nach unten beschränkt durch -K, weil wenn x< -K => x [mm] \not\in [/mm] A
=> [mm] \exists [/mm] infA=:a

-) Sei [mm] \epsilon>0 [/mm]
a+ [mm] \epsilon [/mm] >0 keine untere Schranke, d.h. [mm] \exists [/mm] y [mm] \in [/mm] A: [mm] y Da y [mm] \in [/mm] A gilt für fast alle n, bis auf endlich viele [mm] a_n \le [/mm] y
=> [mm] a_n [/mm] < a+ [mm] \epsilon \gdw a_n [/mm] - a < [mm] \epsilon \forall [/mm] n ab einen bestimmten Index.

-) Sei [mm] \epsilon>0 [/mm]
[mm] a-\epsilon [/mm] < a untere SChranke von A aber nicht die größte
=> [mm] a-\epsilon \not\in [/mm] A, d.h. für fast alle n ist [mm] a-\epsilon [/mm] < [mm] a_n [/mm]
[mm] \gdw -a_n [/mm] + a [mm] <\epsilon \forall [/mm] n ab einen bestimmen Index.

Jetzt haben wir doch gezeigt, dass für beliebiges [mm] \epsilon>0 [/mm] ab einen bestimmen Index gilt:
[mm] |a_n-a| [/mm] < [mm] \epsilon [/mm]
Was bedeuten würde, dass a ein Grenzwert ist und nicht nur Häufungswert? Was verstehe ich hier falsch?

        
Bezug
Bolzano-Weierstraß,Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 07:38 Do 13.11.2014
Autor: fred97


> Jede beschränkte Folge von reellen Nummern hat einen
> Häufungswert.
>  Ich verstehe den beweis, nur der Schluß macht mir
> Probleme warum der konstruierte Punkt nur ein Häufungswert
> und kein Grenzwert ist.
>  Unsere Definition für Häufungswert:
>  [mm]\forall \epsilon>0 \forall[/mm] N [mm]\in \IN \exists[/mm] m [mm]\ge[/mm] N:
> [mm]|a_m-a|<\epsilon[/mm]
>  
> Der Beweis in eigenen Worten widergegeben:
>  
> -) Sei [mm](a_n)[/mm] eine beliebige beschränkte Folge: [mm]\exists[/mm] K
> [mm]\in \IR[/mm] : [mm]|a_n| \le[/mm] K [mm]\forall[/mm] n [mm]\in \IN[/mm]
>  
> -) Konstruiere Menge [mm]A=\{x \in \IR: a_n >x \mbox{für endlich viele }n\}[/mm]
>  
> A [mm]\not=\emptyset[/mm] da K [mm]\in[/mm] A, weil ja rechts von K endlich
> viele, in dem Fall keine, Folgenglieder liegen.
>  A ist nach unten beschränkt durch -K, weil wenn x< -K =>

> x [mm]\not\in[/mm] A
>  => [mm]\exists[/mm] infA=:a

>  
> -) Sei [mm]\epsilon>0[/mm]
>  a+ [mm]\epsilon[/mm] >0 keine untere Schranke, d.h. [mm]\exists[/mm] y [mm]\in[/mm]
> A: [mm]y
>  Da y [mm]\in[/mm] A gilt für fast alle n, bis auf endlich viele
> [mm]a_n \le[/mm] y
>  => [mm]a_n[/mm] < a+ [mm]\epsilon \gdw a_n[/mm] - a < [mm]\epsilon \forall[/mm] n ab

> einen bestimmten Index.


Das ist O.K.


>  
> -) Sei [mm]\epsilon>0[/mm]
>  [mm]a-\epsilon[/mm] < a untere SChranke von A aber nicht die
> größte
>  => [mm]a-\epsilon \not\in[/mm] A, d.h. für fast alle n ist

> [mm]a-\epsilon[/mm] < [mm]a_n[/mm]


Das ist nicht O.K. Es gilt nur:

[mm]a-\epsilon[/mm] < [mm]a_n[/mm]  für unendlich viele n !!!

FRED

>  [mm]\gdw -a_n[/mm] + a [mm]<\epsilon \forall[/mm] n ab einen bestimmen
> Index.
>  
> Jetzt haben wir doch gezeigt, dass für beliebiges
> [mm]\epsilon>0[/mm] ab einen bestimmen Index gilt:
>  [mm]|a_n-a|[/mm] < [mm]\epsilon[/mm]
> Was bedeuten würde, dass a ein Grenzwert ist und nicht nur
> Häufungswert? Was verstehe ich hier falsch?


Bezug
                
Bezug
Bolzano-Weierstraß,Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:49 Do 13.11.2014
Autor: sissile

Hallo Fred, danke für die Antwort.

Aber wieso ist der Schluss bei dem vorigen Absatz richtig?

>  Da y $ [mm] \in [/mm] $ A gilt für fast alle n, bis auf endlich viele
> $ [mm] a_n \le [/mm] $ y
>  => $ [mm] a_n [/mm] $ < a+ $ [mm] \epsilon \gdw a_n [/mm] $ - a < $ [mm] \epsilon \forall [/mm] $ n ab

> einen bestimmten Index.


> Das ist O.K.

Das müsste dann ja auch falsch sein, und ich kann nur schreiben:
[mm] \forall [/mm] N [mm] \in \IN \exists [/mm] n [mm] \ge [/mm] N : [mm] a_n [/mm] <a [mm] +\epsilon [/mm]

LG,
sissi

Bezug
                        
Bezug
Bolzano-Weierstraß,Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Do 13.11.2014
Autor: fred97


> Hallo Fred, danke für die Antwort.
>  
> Aber wieso ist der Schluss bei dem vorigen Absatz richtig?
>  >  Da y [mm]\in[/mm] A gilt für fast alle n, bis auf endlich
> viele
>  > [mm]a_n \le[/mm] y

>  >  => [mm]a_n[/mm] < a+ [mm]\epsilon \gdw a_n[/mm] - a < [mm]\epsilon \forall[/mm] n

> ab
>  
> > einen bestimmten Index.
>  
>
> > Das ist O.K.
> Das müsste dann ja auch falsch sein


Nein, das ist richtig.


> , und ich kann nur
> schreiben:
>  [mm]\forall[/mm] N [mm]\in \IN \exists[/mm] n [mm]\ge[/mm] N : [mm]a_n[/mm] <a [mm]+\epsilon[/mm]
>
> LG,
>  sissi


Wir haben:

(1) [mm] a_n
und

(2)  a- [mm] \epsilon [/mm] < [mm] a_n [/mm] für unendlich viele n.

(1) und (2) zusammen ergibt

   [mm] |a_n-a|< \epsilon [/mm] für unendlich viele n,

wie gewünscht !

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de