www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Bolzano Weierstraß
Bolzano Weierstraß < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bolzano Weierstraß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Mi 06.02.2013
Autor: theresetom

Aufgabe
Lemma:
Sei [mm] (x_j)_{j\in \IN} [/mm] eine beschränkte monotone Folge. Dann [mm] \exists [/mm] lim [mm] sup_{j->\infty} x_j. [/mm] Insbesondere:
lim [mm] sup_{j->\infty} x_j [/mm] = [mm] lim_{j->\infty} (sup\{x_j:j \ge k \}) [/mm]

Hei
Was ist der Unterschied zwischen linker und rechter seite ?
Rechts wir aus der menge der Häufungswerte der größte ausgewählt. Und rechts der sup der menge der Bild werte? Was ist salopp der unterschied was rechts bzw links getan wird?

Sei [mm] (x_j)_{j\in \IN} [/mm] eine beschränkte Folge.
Wieso ist [mm] sup\{x_j : j>=k \} [/mm] eine beschränkte Monotone folge=???
Weil dann folgt die Existenz des Grenzwertes [mm] lim_{j->\infty} [/mm] ( [mm] sup\{x_j : j \ge k\}) [/mm] aus einen anderen Lemma.

Weiter im Beweis heißt es:
Sei [mm] \epsilon>0 [/mm] ,  [mm] \exists [/mm] N [mm] \in \IN: \forall [/mm] k [mm] \ge [/mm] N
| sup [mm] \{x_j : j \ge k \} [/mm] - [mm] x_0 [/mm] | [mm] \le \epsilon/2 [/mm]
Also Menge [mm] \{ j : x_j > x_0 + \epsilon \} [/mm] endlich.

Sei k [mm] \ge [/mm] N - Wähle j [mm] \ge [/mm] k mit sup [mm] \{x_j : j \ge j \} [/mm] - [mm] \epsilon \le x_j \le sup\{x_j : j \ge k \} [/mm]


=> | [mm] x_j [/mm] - [mm] x_0 [/mm] | [mm] \le [/mm] | [mm] x_j [/mm] - sup [mm] \{ x_j : j \ge k \} [/mm] +| sup [mm] \{ x_j : j \ge k \} [/mm] - [mm] x_0| \le \epsilon [/mm]

Frage
M üsste:

> Sei k [mm] \ge [/mm] N - Wähle j [mm] \ge [/mm] k mit sup [mm] \{x_j : j \ge j \} [/mm]  -  [mm] \epsilon \le x_j \le sup\{x_j : j \ge k \} [/mm]

Nicht [mm] \epsilon/2 [/mm] stehen dass das am schluss mit epsilon aufgeht?

        
Bezug
Bolzano Weierstraß: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Fr 08.02.2013
Autor: steppenhahn

Hallo,


> Lemma:
>  Sei [mm](x_j)_{j\in \IN}[/mm] eine beschränkte monotone Folge.
> Dann [mm]\exists[/mm] lim [mm]sup_{j->\infty} x_j.[/mm] Insbesondere:
>  lim [mm]sup_{j->\infty} x_j[/mm] = [mm]lim_{j->\infty} (sup\{x_j:j \ge k \})[/mm]
>  
> Hei
>  Was ist der Unterschied zwischen linker und rechter seite
> ?
>  Rechts wir aus der menge der Häufungswerte der größte
> ausgewählt. Und rechts der sup der menge der Bild werte?
> Was ist salopp der unterschied was rechts bzw links getan
> wird?


Analytisch gesehen gibt es keinen Unterschied, weil die obige Behauptung auch als Definition für den Limes Superior benutzt wird.

Links steht, wie du schon gesagt hast, der größte Häufungspunkt.
Rechts steht der Limes über eine Folge. Diese Folge hat als k-tes Folgenglied das Supremum über alle [mm] $x_j$ [/mm] ab dem k-ten Folgenglied.

Anschaulich ist ein Häufungswert ein Wert, dem die Folge unendlich oft sehr nahe kommt. Der größte Häufungspunkt ist also der größte Wert, dem die Folge unendlich oft nahe kommt.



> Sei [mm](x_j)_{j\in \IN}[/mm] eine beschränkte Folge.
>  Wieso ist [mm]sup\{x_j : j>=k \}[/mm] eine beschränkte Monotone
> folge=???


Die Folge [mm] $a_k [/mm] := [mm] \sup\{x_j: j \ge k\}$ [/mm] ist beschränkt, weil [mm] $(x_j)$ [/mm] beschränkt ist: [mm] $(x_j)$ [/mm] beschränkt [mm] \Rightarrow $\exists [/mm] C [mm] \in \IR [/mm] : [mm] \forall [/mm] j [mm] \in \IN: |x_j| \le [/mm] C$. Also auch [mm] $|a_k| \le \sup\{|x_j|: j \ge k\}$ \le [/mm] C.

Die Folge [mm] $a_k$ [/mm] ist monoton fallend, denn: Bei [mm] $a_1$ [/mm] wird das Supremum über [mm] $\{x_1,x_2,x_3,...\}$ [/mm] gebildet, bei [mm] $a_2$ [/mm] das Supremum über [mm] $\{x_2,x_3,x_4,...\}$ [/mm] usw. Das heißt, das Folgenglied [mm] $a_2$ [/mm] ist das Supremum über ein Folgenglied WENIGER. Dadurch wird das Supremum kleiner.



>  Weil dann folgt die Existenz des Grenzwertes
> [mm]lim_{j->\infty}[/mm] ( [mm]sup\{x_j : j \ge k\})[/mm] aus einen anderen
> Lemma.


Ja. Monotone + beschränkte Folgen sind konvergent.


> Weiter im Beweis heißt es:
>  Sei [mm]\epsilon>0[/mm] ,  [mm]\exists[/mm] N [mm]\in \IN: \forall[/mm] k [mm]\ge[/mm] N
>  | sup [mm]\{x_j : j \ge k \}[/mm] - [mm]x_0[/mm] | [mm]\le \epsilon/2[/mm]
>  Also
> Menge [mm]\{ j : x_j > x_0 + \epsilon \}[/mm] endlich.


[mm] $x_0$ [/mm] ist hierbei der Grenzwert der Folge [mm] $a_k$, [/mm] nehme ich an.



> Sei k [mm]\ge[/mm] N - Wähle j [mm]\ge[/mm] k mit sup [mm]\{x_j : j \ge j \}[/mm] -
> [mm]\epsilon \le x_j \le sup\{x_j : j \ge k \}[/mm]
>  
>
> => | [mm]x_j[/mm] - [mm]x_0[/mm] | [mm]\le[/mm] | [mm]x_j[/mm] - sup [mm]\{ x_j : j \ge k \}[/mm] +| sup
> [mm]\{ x_j : j \ge k \}[/mm] - [mm]x_0| \le \epsilon[/mm]
>  
> Frage
>   M üsste:
>  > Sei k [mm]\ge[/mm] N - Wähle j [mm]\ge[/mm] k mit sup [mm]\{x_j : j \ge j \}[/mm]  

> -  [mm]\epsilon \le x_j \le sup\{x_j : j \ge k \}[/mm]
>  Nicht
> [mm]\epsilon/2[/mm] stehen dass das am schluss mit epsilon aufgeht?


Ja.

Viele Grüße,
Stefan



Bezug
                
Bezug
Bolzano Weierstraß: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Fr 08.02.2013
Autor: theresetom

tausend dank.
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de