www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Borel-Cantelli
Borel-Cantelli < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Borel-Cantelli: Tipp, Idee, Hilfe
Status: (Frage) beantwortet Status 
Datum: 00:20 Mo 02.04.2012
Autor: Mija

Aufgabe
Sei [mm] $(\Omega, \mathcal{F}, \IP)$ [/mm] ein Maßraum. Sei [mm] $(X_n)$ [/mm] unabhängig.

z.z.: Ist [mm] $\summe_{n=1}^{\infty} \IP(X_n [/mm] > M) = [mm] \infty$ $\forall [/mm] M [mm] \in [/mm] N$, so gilt [mm] $sup_{n \in \IN}$ $X_n [/mm] = [mm] \infty$ [/mm]


Hallo, ich habe kleine Probleme mit obenstehender Aufgabe. Undzwar weiß ich zwar generell schon, was das Lemma von Borel-Cantelli aussagt, aber ich weiß irgendwie nicht, wie ich das $sup$ [mm] $X_n$ [/mm] dort einbringen soll.

Kann mir jemand weiterhelfen? :)

        
Bezug
Borel-Cantelli: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Mo 02.04.2012
Autor: tobit09

Hallo Mija,

> Sei [mm](\Omega, \mathcal{F}, \IP)[/mm] ein Maßraum. Sei [mm](X_n)[/mm]
> unabhängig.

Ich gehe mal davon aus, dass nicht nur ein Maßraum, sondern ein Wahrscheinlichkeitsraum vorliegen soll.

> z.z.: Ist [mm]\summe_{n=1}^{\infty} \IP(X_n > M) = \infty[/mm]
> [mm]\forall M \in N[/mm], so gilt [mm]sup_{n \in \IN}[/mm] [mm]X_n = \infty[/mm]

Am Schluss soll es wohl [mm] "$\IP$-fast-sicher" [/mm] heißen, sonst stimmt die Aussage nämlich nicht.

> Undzwar weiß ich zwar generell schon, was das Lemma von
> Borel-Cantelli aussagt, aber ich weiß irgendwie nicht, wie
> ich das [mm]sup[/mm] [mm]X_n[/mm] dort einbringen soll.

Wende Borel-Cantelli für festes [mm] $M\in\IN$ [/mm] auf die Ereignisse

     [mm] $A_n:=\{X_n>M\}$ [/mm]

an.

Es gilt

     [mm] $\{\sup_{n\in\IN}X_n=\infty\}=\bigcap_{M\in\IN}\{\sup_{n\in\IN}X_n>M\}$. [/mm]

Weiterhin

     [mm] $\{\sup_{n\in\IN}X_n>M\}=\{X_n>M\mbox{ für mindestens ein }n\in\IN\}=\{\mbox{für mindestens ein }n\in\IN \mbox{ tritt }A_n\mbox{ ein}\}$. [/mm]

Reicht das schon an Tipps?

Viele Grüße
Tobias

Bezug
                
Bezug
Borel-Cantelli: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 Mo 02.04.2012
Autor: Mija

Ja, das mit dem W-Raum und dem [mm] $\IP$-fast [/mm] sicher stimmt.

Also..

Sei [mm] $A_n [/mm] := [mm] \{X_n > M \}$ [/mm] für $M [mm] \in \IN$. [/mm]

Es gilt [mm] \{ sup_{n \in \IN} X_n = \infty \} [/mm] = [mm] \bigcap_{M \in \IN} \{sup_{n \in \IN} X_n > M \}$. [/mm]

Weiterhin [mm] $\{ sup_{n \in \IN} X_n > M} [/mm] = [mm] \{X_n > M$ für mindestens ein $n \in \IN \} [/mm] = [mm] \{$ für mindestens ein $n \in \IN$ tritt $A_n ein \} [/mm] = [mm] \bigcup_{n \in \IN} A_n [/mm] = [mm] \bigcup_{n \in \IN} \{X_n > M \}$ [/mm]

Dann ist $A = [mm] \bigcap_{i \in \IN} \bigcup_{n \ge i} A_n [/mm] = [mm] \bigcap_{i \in \IN} \bigcup_{n \ge i} \{X_n > M\} [/mm] = [mm] \bigcap_{i \in \IN} \{sup X_n > M \} [/mm] = [mm] \{sup_{n \in \IN} X_n = \infty \}$ [/mm]

Stimmt das soweit?

Wie mache ich jetzt weiter? Ich komme irgendwie ständig mit der Verinigung und dem Schnitt durcheinander.

Bezug
                        
Bezug
Borel-Cantelli: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Mo 02.04.2012
Autor: tobit09


> Sei [mm]A_n := \{X_n > M \}[/mm] für [mm]M \in \IN[/mm].
>  
> Es gilt [mm]\{ sup_{n \in \IN} X_n = \infty \}[/mm] = [mm]\bigcap_{M \in \IN} \{sup_{n \in \IN} X_n > M \}$.[/mm]
>  
> Weiterhin [mm]\{ sup_{n \in \IN} X_n > M} = \{X_n > M[/mm] für
> mindestens ein [mm]n \in \IN \} = \{[/mm] für mindestens ein [mm]n \in \IN[/mm]
> tritt [mm]A_n ein \} = \bigcup_{n \in \IN} A_n = \bigcup_{n \in \IN} \{X_n > M \}[/mm]
>  
> Dann ist [mm]A = \bigcap_{i \in \IN} \bigcup_{n \ge i} A_n = \bigcap_{i \in \IN} \bigcup_{n \ge i} \{X_n > M\} = \bigcap_{i \in \IN} \{sup X_n > M \} = \{sup_{n \in \IN} X_n = \infty \}[/mm]
>  
> Stimmt das soweit?

Nein. Die beiden hinteren Gleichheiten stimmen i.A. nicht.

A soll der Limes superior der [mm] A_n [/mm] sein? Davon gehe ich im Folgenden aus.

Möglicherweise habe ich dich durch eine unglückliche Benennung der [mm] $A_n$ [/mm] ohne $M$ als Index zu verwenden verwirrt. Für festes jedes feste [mm] $M\in\IN$ [/mm] haben wir so eine Folge [mm] $(A_n)_{n\in\IN}$ [/mm] von Mengen.


1. Auf die solltest du das Lemma von Borel-Cantelli anwenden. Warum ist es anwendbar und was erhältst du? [mm] ($\IP(A)=\ldots$) [/mm]
  

> Wie mache ich jetzt weiter? Ich komme irgendwie ständig
> mit der Verinigung und dem Schnitt durcheinander.

2. Zeige [mm] $A\subseteq \{\sup_{n\in\IN}X_n>M\}=:B_M$. [/mm]

3. Also [mm] $\IP(B_M)=\ldots$. [/mm]

Bis hierhin haben wir ein festes [mm] $M\in\IN$ [/mm] betrachtet, um [mm] $\IP(B_M)$ [/mm] zu bestimmen. Ab jetzt betrachten wir die [mm] $B_M$ [/mm] für verschiedene [mm] $M\in\IN$ [/mm] (und vergessen somit unsere Ereignisse [mm] $A_n$ [/mm] und A, die von einem festen $M$ abhingen).

4. Mit [mm] $B:=\{\sup_{n\in\IN}X_n=\infty\}=\bigcap_{M\in\IN}B_M$ [/mm] liefert die Stetigkeit nach unten von [mm] $\IP$ [/mm] wegen ..., dass [mm] $\IP(B)=\ldots$. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de