www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Borel-Cantelli Beweis
Borel-Cantelli Beweis < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Borel-Cantelli Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:04 Sa 15.10.2011
Autor: kalor

Morgen!

Ich brüte über dem Beweis von Borel-Cantelli und hätte dazu eine Frage:
Es geht um das erste Lemma:

Wenn man eine Folge $\ [mm] (A_n)_{n\in \IN} [/mm] $ so dass

$\ [mm] \summe_{n\in \IN} P(A_n) [/mm] < [mm] \infty \Rightarrow P[\limsup_{n}A_n]=0$. [/mm]

wobei $\ P $ ein Wahrscheinlichkeitsmass ist. Ich kannte bisher diesen Beweis:

$\ [mm] A:=\limsup A_n [/mm] $

$\ P(A) = [mm] \lim P(\cup_{l\ge n}A_l) \le \lim \summe_{l\ge n} P(A_l) [/mm] = 0 $

Wobei ich die Stetigkeits des Masses ausgenützt habe, sowie Monotonie.
Nun habe ich aber einen anderen Beweis gesehen, den ich nicht ganz verstehe:

Mit monotoner Konvergenz gilt foglendes:

$\ [mm] E[\summe_{i=1}^{\infty}1_{A_i}] [/mm] = [mm] \summe_{i=1}^{\infty} P(A_i) [/mm] < [mm] \infty [/mm]  $
Soweit ist mir das klar, da ich monotone Konvergenz anwenden darf (betrachten der Folge der Partialsummen).
Die Summanden sind natürlich die charakteristischen Funktionen. Daraus folgert man nun:

$\ [mm] \summe_{i=1}^{\infty} 1_{A_i} [/mm] < [mm] \infty \mbox{ P-f.s } \Rightarrow P(\limsup A_i [/mm] ) = 0 $

Diese Folgerungen verstehe ich überhaupt nicht. Genauer:

1. Wieso gilt aus obigem, dass $\ [mm] \summe_{i=1}^{\infty} 1_{A_i} [/mm] < [mm] \infty \mbox{ P-f.s } [/mm] $? P-f.s. heisst doch:

$\ [mm] P(\lim_{n\to \infty}\summe_{i=1}^n 1_{A_i} [/mm] < [mm] \infty [/mm] ) = 1$

2. Der Grund, dass ich daraus schliessen kann, dass $\ [mm] P(\limsup A_i [/mm] ) = 0$ ist doch folgender:

Es gilt: $\ [mm] 1_{\limsup A_i} [/mm] = [mm] \limsup 1_{A_i}$, [/mm] d.h. wenn $\ [mm] \summe 1_{A_i} [/mm] < [mm] \infty [/mm] $ P-f.s., dann muss $\ [mm] (1_{A_i}) [/mm] $ eine Nullfolge (P.f.s) sein, also folgt $\ [mm] P(\limsup A_i) [/mm] = 0$. Ist das richtig gefolgert?

Vielleicht liegt es nur eine andere Notation, aber diesen Beweis verstehe ich nicht. Wäre nett, wenn mir jemand weiterhelfen könnte.

mfg

KaloR

        
Bezug
Borel-Cantelli Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Sa 15.10.2011
Autor: Blech

Hi,

> $ \ [mm] \summe_{i=1}^{\infty} 1_{A_i} [/mm] < [mm] \infty \mbox{ P-f.s } \Rightarrow P(\limsup A_i [/mm] ) = 0 $

[mm] $\summe_{i=1}^{\infty} 1_{A_i}$ [/mm] ist eine ZV. wir haben gerade festgestellt, daß sie einen endlichen Erwartungswert hat, also muß sie fast sicher endlich sein.


[mm] $\limsup_i A_i$ [/mm] ist die Menge aller [mm] $\omega$, [/mm] die in unendlich vielen [mm] $A_i$ [/mm] sind, d.h. die Menge aller [mm] $\omega$, [/mm] für die gilt [mm] $\sum_i 1_{A_i}(\omega)=\infty$. [/mm] Nachdem [mm] $\sum_i 1_{A_i}$ [/mm] P-f.s. endlich ist, ist die Wkeit dieser Menge 0.

ciao
Stefan

Bezug
                
Bezug
Borel-Cantelli Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Sa 15.10.2011
Autor: kalor

Hallo Stefan

Danke für die schnelle Antwort! Nur eine kleine Frage, ob meine Argumentation richtig ist:


>  
> [mm]\summe_{i=1}^{\infty} 1_{A_i}[/mm] ist eine ZV.
>

Das folgt, daraus, dass man das als limes der Partialsummen definieren kann und dann, dass der limes von messbaren Funktionen wieder messbar ist?

Nun stellt sich mir eine Anschlussfragen. Wenn ich dann eine Folge $\ [mm] X_n [/mm] , [mm] n\in \IN [/mm] $ habe die unabhängig und Normalverteilt sind mit $\ [mm] \mu [/mm] = 0) $ und $\ [mm] \sigma^2 [/mm] $ wobei $\ [mm] \sigma [/mm] > 0 $. ist. Dann soll mittels dem zweiten Lemma von Borel Cantelli gelten:

$\ [mm] \limsup X_n [/mm] = [mm] \infty [/mm] $ P.f.s

Damit ist doch gemeint, dass $\ [mm] P(\{\omega | \limsup X_n(w) = \infty \}) [/mm] = 1 $.
Wieso folgt das aus dem zweiten Lemma von Borel Cantelli? Ich hätte jetzt eine Menge definiert:
$\ [mm] A_n:=\{\omega | X_n(w) > k\} [/mm] $ für eine beliebige natürliche Zahl k.

Wieso soll die Summe

$\ [mm] \summe P(A_n) [/mm] $ divergieren? Erst dann kann ich ja sagen, dass

$\ [mm] P(\{\omega | \limsup X_n(w) = \infty \})=P(\limsup (A_n) [/mm] )=1 $.

Bezug
                        
Bezug
Borel-Cantelli Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Sa 15.10.2011
Autor: Blech

Hi,

> Wieso soll die Summe $ \ [mm] \summe P(A_n) [/mm] $ divergieren?

weil die [mm] $X_n$ [/mm] iid sind. d.h. [mm] $P(A_n)=c>0$ [/mm] und damit ist die Summe unendlich für alle k.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de