www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Borel-sigma-Algebra
Borel-sigma-Algebra < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Borel-sigma-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:22 Fr 29.04.2011
Autor: Igor1

Aufgabe
Sei (X,d) ein metrischer Raum mit Borel-sigma-Algebra B(X). Sei [mm] Y\subset [/mm] X und [mm] d_{Y} [/mm] die auf Y induzierte Metrik. Zeigen Sie,dass die Borel-sigma-Algebra auf (Y, [mm] d_{Y}) [/mm] gleich der Spur-sigma-Algebra von B(X) auf Y ist, formal:
[mm] B(Y)=\{A\cap Y:A \in B(X)\}=B(X)|_{Y}. [/mm]

Hallo,

hier sind also zwei Inklusionen zu zeigen.
Die Inklusion von links nach rechts habe ich schon gemacht.
Bei der Inklusion von rechts nach links ist mir nicht klar, wie man es zeigt.

Bis jetzt ging ich so vor:

Sei [mm] Z\in B(X)|_{Y} \gdw \exists A_{1}\in [/mm] B(X) mit [mm] A_{1}\cap [/mm] Y =Z
Nun ist zu zeigen, dass [mm] A_{1}\cap [/mm] Y [mm] \in [/mm] B(Y).

Wie kann man hier weiter vorgehen?
Bzw. was soll man beachten?


Gruss
Igor


        
Bezug
Borel-sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 09:36 Sa 30.04.2011
Autor: fred97

Tipp: B(Y) wird erzeugt von den in Y offenen Mengen.

FRED

Bezug
                
Bezug
Borel-sigma-Algebra: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:53 Sa 30.04.2011
Autor: Igor1

Der Tipp bringt mich nicht weiter, da die Definition der Borel-sigma-Algebra in jedem Fall benutzt werden soll.

Es muss einen Grund geben, dass wenn man [mm] A_{1} \in [/mm] B(X) mit Y schneidet, dass die damit entstandene Menge Z in B(Y) ist.

Soll man alle brauchbaren Möglichkeiten durchgehen , welche Eigenschaften [mm] A_{1} [/mm] , Y haben können ?

Z.B wenn [mm] A_{1} [/mm] offen und Y offen sind, dann ist Z auch offen und [mm] Z\subset [/mm] Y, dann ist Z [mm] \in [/mm] B(Y). [mm] A_{1} [/mm] kann also offen oder abgeschlossen oder nichtoffen und nichtabgeschlossen sein (im letzten Falle durch  Schnitt von zwei geeigneter Mengen aus B(X)) . Analog gilt auch für Y.

Oder kann man von diesen allen Möglichkeiten abstrahieren , weil es vielleicht einen kürzeren Weg gibt?



Gruss
Igor

Bezug
                        
Bezug
Borel-sigma-Algebra: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 02.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Borel-sigma-Algebra: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:07 Mo 02.05.2011
Autor: Igor1

Hallo,

ich habe eine Idee, weiß aber nicht, ob diese funktionieren wird:

Da Y mit der Metrik ein metrischer Raum ist, ist Y offen.
[mm] A_{1}\cap [/mm] Y kann ich dann auch zu einem metrischen Raum machen (bezeichnen wir
[mm] A_{1}\cap [/mm] Y mit Z ) . Dann ist Z als metrischer Raum auch offen und Z [mm] \subset [/mm] Y . Ferner gilt Z [mm] \in B(Z)\subset [/mm] B(Y) . Daraus folgt die Behauptung.

Ist das richtig?


Gruss
Igor



Bezug
                        
Bezug
Borel-sigma-Algebra: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Mi 04.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de