www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Borel Cantelli/bew/verständnis
Borel Cantelli/bew/verständnis < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Borel Cantelli/bew/verständnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Do 02.05.2013
Autor: sissile

Aufgabe
Seien [mm] A_1 ,A_2 [/mm] ,.., [mm] \in [/mm] A und sei [mm] A_\infty [/mm] = [mm] \bigcap_{n} (\bigcup_{k\ge n} A_k)) [/mm] ="unendlich viele [mm] A_k [/mm] treten ein.
a) Wenn [mm] \sum_{k=1}^\infty P(A_k) [/mm] < [mm] \infty [/mm] , dann [mm] P(A_\infty)=0 [/mm]
b) Wenn [mm] \sum_{k=1}^\infty P(A_k) [/mm] = [mm] \infty [/mm] und [mm] (A_i)_{i\ge1} [/mm] unabhängig, dann P( [mm] A_\infty [/mm] )=1

Hallo

1)Ich verstehe nicht was es mit: [mm] A_\infty [/mm] = [mm] \bigcap_{n} (\bigcup_{k\ge n} A_k [/mm] )) auf sich hat. Wie kann ich mir dieses Konstrukt vorstellen. Wieso beschreibt es, dass unendlich viele [mm] A_k [/mm] auftreten?
Sollen mir a) und b) eine wichtige Regel sagen?  Das Bsp. sieht sehr gekünstelt aus..Jedoch hat der Prof. immer wieder betont, wie wichtig es doch ist..


2)Auch der Beweis zum Punkt b) hab ich in der  Vorlesung nicht verstanden..
[mm] P(\bigcap_{k\ge n} A_k^c) [/mm] = [mm] lim_{m->\infty} [/mm] P( [mm] \bigcap_{k=n}^m A_k^c) [/mm] = [mm] lim_{m->\infty} \prod_{k=n}^m P(A^c_k) [/mm] = [mm] \prod_{k\ge n} [/mm] (1- [mm] P(A_k)) \le e^{-\sum_{k \ge n} P(A_k)} [/mm] =0
Daher [mm] P(A_\infty^c) [/mm] = P(= [mm] \bigcap_{n} (\bigcup_{k\gen} A_k^c)) [/mm] <= [mm] \sum_n P(\bigcap_{k\ge n} A_k^c) [/mm] =0


> [mm] P(\bigcap_{k\ge n} A_k^c) [/mm] = [mm] lim_{m->\infty} [/mm] P( [mm] \bigcap_{k=n}^m A_k^c) [/mm]

Ich versteh hier schon die erste Gleichheit nicht!
Der nächste Schritt nutzt die Unabhängigkeit der [mm] A_i [/mm] aus.
Der nächste SChritt arbeitet über der gegenwahrscheinlichkeit.
ABer dann:
[mm] \prod_{k\ge n} [/mm] (1- [mm] P(A_k)) \le e^{-\sum_{k \ge n} P(A_k)} [/mm]
ist mir wieder nicht klar.
Rest ist klar.

2 Unklarheit:
Allgemein: 1-x [mm] \le e^{-x} [/mm] wobei x [mm] \in [/mm] [0,1]
[mm] \frac{exp(x)-1}{x-0}=exp(\xi) \ge [/mm] 1 weil [mm] 0<\xi exp(x) [mm] \ge [/mm] x +1
Wie krieg ich das mit Minus hin?

        
Bezug
Borel Cantelli/bew/verständnis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Do 02.05.2013
Autor: wieschoo

1)
Zur Anschauung:

Sei [mm]A_n[/mm] das Ereignis, dass im [mm]n[/mm]-ten Würfeln eine Sechs auftritt, also für [mm]\Omega=\{1,2,3,4,5,6\}^\IN[/mm] ist [mm]A_n=\{\omega\in\Omega\; |\; w_n=6\}[/mm].

Wenn jetzt nun unendlich oft eine Sechse gewürfelt werden soll, so tritt das Ereignis

           [mm]\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k[/mm] = [mm]A_k[/mm] unendlich oft = [mm]\limsup_{n\to \infty} A_n[/mm]

ein.
​Jetzt nimmt man sich ein [mm]x\in \blue{\bigcap_{n=1}^\infty}\red{\bigcup_{k=n}^\infty} A_k[/mm] her. Also liegt das [mm]x[/mm] in jeder Vereinigung [mm]\bigcup_{k=n}^\infty A_k[/mm] - egal wie groß [mm]n[/mm] ist. Du wirst immer für ein beliebiges [mm]n[/mm] ein [mm]k\ge n[/mm] finden, sodass [mm]x[/mm] in [mm]A_k[/mm] liegt. Jetzt schneidet man über all die [mm]n[/mm]'s. Ergo: [mm]A_k[/mm] tritt unendlich oft ein, denn für jedes n tritt mindestens einmal [mm]A_k[/mm] auf.

2)

Dieses [mm]\sum_{k\ge n},\bigcap_{k\ge n},\prod_{k\ge n}[/mm] ist immer eine abkürzende Schreibweise für [mm]\sum_{k= n}^\infty,\bigcap_{k= n}^\infty,\prod_{k= n}^\infty[/mm]. Und dass wiederum ist eine symbolische Schreibweise für [mm]\lim_{m\to\infty}\sum_{k=n}^m,\lim_{m\to\infty}\bigcap_{k=n}^m,\lim_{m\to\infty}\prod_{k=n}^m[/mm].
Also hat man im ersten Schritt es nur umgeschrieben.

Ausführlicher gerechnet ist 
​[mm]\lim_{m->\infty} \prod_{k=n}^m P(A^c_k)=\lim_{m->\infty} \prod_{k=n}^m (1-P(A_k))=\lim_{m->\infty} \exp\left(\sum_{k=n}^m \log (1-P(A_k))\right)\leq \lim_{m->\infty} \exp\left(-\sum_{k=n}^m P(A_k)\right)[/mm]

Es gilt doch für positive zahlen [mm]\exp(\log x)=x[/mm] und für [mm]x\in [0,1][/mm] auch [mm]%2525255Clog%25252520(1-x)%2525255Cleq%25252520-x[/mm][mm]\log (1-x)\leq -x[/mm].
>

> 2 Unklarheit:
> Allgemein: 1-x [mm]\le e^{-x}[/mm] wobei x [mm]\in[/mm] [0,1]
> [mm]\frac{exp(x)-1}{x-0}=exp(\xi) \ge[/mm] 1 weil [mm]0<\xi
> exp(x) [mm]\ge[/mm] x +1
> Wie krieg ich das mit Minus hin?

Schau mal hier :
​https://matheraum.de/forum/Mittelwertsatz_anwenden/t751348

Bezug
                
Bezug
Borel Cantelli/bew/verständnis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Do 02.05.2013
Autor: sissile

danke für die Erklärung

lg

Bezug
        
Bezug
Borel Cantelli/bew/verständnis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Do 02.05.2013
Autor: tobit09

Hallo sissile,


> > [mm]P(\bigcap_{k\ge n} A_k^c)[/mm] = [mm]lim_{m->\infty}[/mm] P(
> [mm]\bigcap_{k=n}^m A_k^c)[/mm]
> Ich versteh hier schon die erste Gleichheit nicht!

Da wird die $P$-Stetigkeit ausgenutzt.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de