www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Brauche Hilfe!
Brauche Hilfe! < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brauche Hilfe!: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:04 Di 16.11.2004
Autor: Deuterinomium

Hallo zusammen!

Ich habe diese Aufgabe auf keinem anderen Forum gestellt!

Ich muss folgende Aussagen beweisen und stoße an meine Grenzen:

a) Beweisen sie: Für alle n aus N gilt:

[mm] [mm] \summe_{k=1}^{n+1} [/mm] {n über (k-1)} [mm] \bruch{1}{k} [/mm] = [mm] \bruch{1}{n+1} [/mm] *(2^(n+1) -1)

b)Bestimmen sie die kleinste natürliche Zahl so, dass füralle n aus N gilt:

[mm] (\bruch{n}{3})^n \le [/mm] n! [mm] \le (\bruch{n}{2})^n [/mm]

(Hilfe: Abschätzung: [mm] (1+\bruch{1}{n})^n \le (1+\bruch{1}{n+1})^{n+1} \le [/mm] 3)

c) Seien: [mm] [mm] a_1 :=a_2 [/mm] :=1 und a_(n+2) := a_(n+1) + [mm] a_n [/mm] ; [mm] x:=\bruch{1}{2}(1+\wurzel{5}) [/mm] und y:= [mm] \bruch{1}{2}(1-\wurzel{5})[/mm] [mm]. Man zeige:

[mm] [mm] a_n [/mm] = [mm] (x^n [/mm] - [mm] y^n)/ \Wurzel5 [/mm]

Ich brauche dringend Hilfe! Vielen Dank schon mal im Voraus!

        
Bezug
Brauche Hilfe!: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Di 16.11.2004
Autor: Julius

Hallo Deuterinomium!

Du kannst nicht erwarten, dass wir dir deinen ganzen Aufgabenzettel lösen, ohne dass du eigene Ideen und Lösungsansätze beisteuerst!! (Zumal du bisher nicht durch Hilfe bei anderen Hilfsbedürftigen aufgefallen bist.)

Ich rechne dir jetzt die a) vor. Bei b) und c) erwarte ich dann viel mehr Eigeninitiative von dir! Du willst ja schließlich Mathe studieren, da musst du sowas schon hinbekommen oder wenigstens Ansätze finden.

a) Es gilt:

[mm] $\sum\limits_{k=1}^{n+1} [/mm] {n [mm] \choose [/mm] {k-1}} [mm] \cdot \frac{1}{k}$ [/mm]

$= [mm] \sum\limits_{k=1}^{n+1} \frac{n!}{k! \cdot (n-k+1)!}$ [/mm]

$ = [mm] \frac{1}{n+1} \sum\limits_{k=1}^{n+1} \frac{(n+1)!}{k! \cdot (n+1-k)!}$ [/mm]

$= [mm] \frac{1}{n+1} \sum\limits_{k=1}^{n+1} [/mm] {{n+1} [mm] \choose [/mm] k}$

$= [mm] \frac{1}{n+1} \cdot \left[ \sum\limits_{k=0}^{n+1} {{n+1} \choose k} - 1\right]$ [/mm]

$= [mm] \frac{1}{n+1} \cdot \left[ 2^{n+1}-1\right]$. [/mm]


So, jetzt bist du mal dran. Wie würdest du bei b) und c) ansetzen? Und woran scheitert es?

Viele Grüße
Julius

Bezug
                
Bezug
Brauche Hilfe!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Di 16.11.2004
Autor: Deuterinomium

Danke Julius!

Natürlich hast du recht! Inzwischen bin ich auch selbst durch Überlegung auf die Lösungen gekommen! Ich war einfach zu faul mich ernsthaft damit zu beschäftigen, werde dies aber abstellen.

Also vielen Dank nochmal für den mathematischen Ansatz und die Motivation!

Als Beweis:

c) I.v.: n=1
[mm] 1=a_1=\bruch{1}{\Wurzel{5}}( \bruch{1 + \Wurzel{5}{2}}-\bruch{1 + \Wurzel{5}{2}} [/mm] ) =  [mm] \bruch{2*\Wurzel{5}}{2*\Wurzel{5}}=1 [/mm]

Außerdem für n=2, da die Rekursionsormel der Fibonacci - Folge aufdie beiden vorhergehenden Glieder Bezug nimmt :

[mm] 1=a_2=\bruch{1}{\Wurzel{5}}( (\bruch{1 + \Wurzel{5}{2}})^2-(\bruch{1 + \Wurzel{5}{2}})^2 [/mm] )=  [mm] \bruch{1}{\Wurzel{5}} \bruch{1}{2}(3+\wurzel{5}-3+\wurzel{5})=1 [/mm]

Induktionsannahme:

Es gelten [mm] a_n [/mm] und a_(n+1)

Induktionsschritt:

a_(n+2) = [mm] a_n [/mm] + a_(n+1)= [mm] \bruch{x^n-y^n}{\Wurzel{5}} [/mm] + [mm] \bruch{x^(n+1)-y^(n+1)}{\Wurzel{5}}= \bruch{1}{\Wurzel{5}}(x^{n+1}+x^n-y^{n+1}-y^n)= \bruch{1}{\Wurzel{5}}(x^n(x+1)-y^n(y+1))= \bruch{1}{\Wurzel{5}}(x^n* \bruch{3 + \Wurzel{5}{2}} [/mm] - [mm] y^n*\bruch{3 + \Wurzel{5}{2}} [/mm] )= [mm] \bruch{1}{\Wurzel{5}}(x^n*x^2-y^n*y2) [/mm] q.e.d




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de