www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Brownsche Bewegung
Brownsche Bewegung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brownsche Bewegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Di 22.05.2012
Autor: Fry

Hallo,

könnte mir jemand sagen, ob meine Ausführungen richtig sind? Es geht vor allem um die letzten Schritte.

[Dateianhang nicht öffentlich]

LG
Fry


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Brownsche Bewegung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:46 So 03.06.2012
Autor: Gonozal_IX

Hi Fry,

warum ich dein Thema jetzt erst gesehen hab, ist mir ein Rätsel....

also die Doobsche Maximalungleichung geht nicht für [mm] $\sup_{t \ge 0}$, [/mm] sondern nur für [mm] \sup_{\{0 \le t \le n\}} [/mm]
Das ändert zwar nur geringfügig etwas, aber dein [mm] X_\infty [/mm] muss ja auch gar nicht existieren (und existiert auch nicht beim Exponentialmartingal).

MFG,
Gono.

Bezug
                
Bezug
Brownsche Bewegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:24 So 03.06.2012
Autor: Fry


Hey Gono,

vielen Dank für deinen Beitrag! Das mit der Doobschen Ungleichung hab ich mir schon fast gedacht *seufz* Warum existiert denn [mm] M_{\infty} [/mm] nicht. Dachte gerade, dass OS-Theorem die Existenz sichert...

Irgendeine Idee, wie man die Argumentationslücke schließen könnte?

VG
Fry


Bezug
                        
Bezug
Brownsche Bewegung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 So 03.06.2012
Autor: Gonozal_IX

Hiho,

> vielen Dank für deinen Beitrag! Das mit der Doobschen
> Ungleichung hab ich mir schon fast gedacht *seufz* Warum
> existiert denn [mm]M_{\infty}[/mm] nicht. Dachte gerade, dass
> OS-Theorem die Existenz sichert...

Nein.
Das Exponentialmartingal geht [mm] $\IP$-f.s. [/mm] gegen Null.
Wäre das nun dein [mm] $M_\infty$, [/mm] so wäre Insbesondere $0 = [mm] E[M_\infty] [/mm] = [mm] E[M_0] [/mm] = 1$, was ein Widerspruch wäre.
  

> Irgendeine Idee, wie man die Argumentationslücke
> schließen könnte?

Ja.
Mach aus dem [mm] $\sup_{t \ge 0}$ [/mm] erstmal ein [mm] $\lim_{n\to\infty}\sup_{0 \le t \le n}$ [/mm] und überlege dann, warum du es aus dem [mm] \IP [/mm] herausziehen kannst.

Der Rest folgt dann mit deiner Argumentation und Doob analog.

MFG,
Gono.

Bezug
                                
Bezug
Brownsche Bewegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 So 03.06.2012
Autor: Fry

Hey Gono,

also ich würde das dann so machen:
[mm] $P(\lim_{n\to\infty}\sup_{0\le t\le n}X_n\ge e^{\varepsilon a}) [/mm]
[mm] \overset{(1)}{=} \lim_{n\to\infty} P(\sup_{0\le t\le n}X_n\ge e^{\varepsilon a}) [/mm]
[mm] =\lim_{n\to\infty} \mathbb E[X_n]e^{-\varepsilon a}\overset{(2)}{=}e^{-\varepsilon a}$ [/mm]

(1) wegen der Stetigkeit von oben
(2) da [mm] $\mathbb E[e^{\varepsilon B_n}]=e^{\frac{1}{2}\varepsilon^2n}$ [/mm]

Was hälst du davon?

LG
Fry



Bezug
                                        
Bezug
Brownsche Bewegung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 So 03.06.2012
Autor: Gonozal_IX

Hiho,

> (1) wegen der Stetigkeit von oben

[ok]

>  (2) da [mm]\mathbb E[e^{\varepsilon B_n}]=e^{\frac{1}{2}\varepsilon^2n}[/mm]

oder besser: [mm] $E[X_n] [/mm] = [mm] E[X_0] [/mm] = 1$, da [mm] X_n [/mm] Martingal

> Was hälst du davon?

(1) und (2) stimmen. Nur das Gleichheitszeichen dazwischen nicht. Das muss ein Ungleichungszeichen sein nach Doob. Nur welches? ;-)

MFG,
Gono.

Bezug
                                                
Bezug
Brownsche Bewegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:02 So 03.06.2012
Autor: Fry

Verstanden :),

ein groooßes Dankeschön!

LG
Fry


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de