www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Brownsche Bewegung - stetig
Brownsche Bewegung - stetig < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brownsche Bewegung - stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Mo 20.04.2015
Autor: waruna

Aufgabe
Brownsche Bewegung ist fast überall stetig und fast nirgendwo differenzierbar.

Wie kann das gleichzeitig erfüllt sein (ich vermisse kein Beweis, ich will mir das vorstellen können)?
Hat das etwas damit zu tun, wie Brownsche Bewegung definiert ist - das dort man über endlich -dimensionalen Distributionen redet (so ist das in "Stochastic Differential Equation" von Oksendal dargestellt)?

        
Bezug
Brownsche Bewegung - stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Mo 20.04.2015
Autor: Gonozal_IX

Hiho,

> Brownsche Bewegung ist fast überall stetig und fast nirgendwo differenzierbar.
>  Wie kann das gleichzeitig erfüllt sein (ich vermisse kein
> Beweis, ich will mir das vorstellen können)?

dir scheint nicht klar zu sein, dass das eigentlich nichts besonderes ist, sonst bräuchte man die Unterscheidung ja nicht. Stetige Funktionen sind im Allgemeinen eben nicht gleichzeitig auch differenzierbar.
Das hat nichts mit der Brownschen Bewegung als solche zu tun.

Letztendlich muss die Funktion dafür nur "ausreichend zackig" sein, in der Mathematik bezeichnet man solche Pfade als "rau", dem gegenteil von "glatt".
Spricht man von "ausreichend glatt" meint der Mathematiker "ausreichend oft stetig differenzierbar".

Als Beispiel einer Funktion, die eben überall stetig und nirgends differenzierbar ist, kannst du dir auch mal die []Weierstraß-Funktion anschauen.
Dort erkennst du auch die "Rauheit" der Funktion.

Insbesondere: Egal wie nah du ranzoomst, die Funktion bleibt so "rau" und wird eben nicht, wie man sich das intuitiv vorstellen könnte, glatter, denn sonst wäre sie ja differenzierbar.

Das ist, meiner Meinung nach, auch eine gute Möglichkeit sich das vorzustellen: Die Funktion ist zackig, auch im unendlich kleinen, d.h. egal wie oft du vergrößerst, die Funktion bleibt so. "Selbstähnlichkeit" wäre hier vielleicht noch ein gutes Stichwort.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de