www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Bruch integrieren
Bruch integrieren < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruch integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 Mo 15.07.2013
Autor: Ellie123

Hallo zusammen,

kann mir jemand vielleicht einen Tipp geben wie man die Stammfunktionen zu den folgenden beiden Brüchen bestimmt. Komme da irgendwie nicht weiter:

[mm] \integral_{}^{}{\bruch{1}{2+x^2} dx} [/mm]   bzw. [mm] \integral_{}^{}{\bruch{1}{3- 4x^2} dx} [/mm]

Vielen Dank schon einmal! Gruß Ellie

        
Bezug
Bruch integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Mo 15.07.2013
Autor: algieba

Hallo

Diese beiden Integrale kannst du mit der Integration durch Substitution lösen ([]Wikipedia). Der Lösungsweg deiner Integrale ist so ähnlich wie Beispiel 1 unter "Substitution eines unbestimmten Integrals" in Wikipedia. Schau dir das mal genau an und versuche es auf deine Integrale zu übertragen. Du kannst es ja mal versuchen. Sonst frag einfach noch einmal nach.

Viele Grüße

Bezug
        
Bezug
Bruch integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:11 Mo 15.07.2013
Autor: Marcel

Hallo,

nur mal der Sprache wegen:

> Hallo zusammen,
>  
> kann mir jemand vielleicht einen Tipp geben wie man die
> Stammfunktionen

Stammfunktionen sind NICHT eindeutig (unter gewissen Voraussetzungen
nur eindeutig bis auf eine additiv(e) konstante Funktion/Konstante). Du
musst also fragen, wie man jeweils EINE Stammfunktion bestimmt.

> zu den folgenden beiden Brüchen bestimmt.

Eine Stammfunktion bezieht sich natürlich auch auf eine Funktion. Es ist
klar, was Du meinst, aber (etwas) strenggenommen(er) müsstest Du hier
eher sowas sagen, dass die jeweiligen []Integranden (klick!) in Bruchform
gegeben sind (wobei auch das schon nicht wirklich exakt formuliert ist).
Wichtiger finde ich allerdings, dass Du Dir klarmachst, dass es i.a. für eine
Funktion nicht DIE Stammfunktion gibt!

> [mm]\integral_{}^{}{\bruch{1}{2+x^2} dx}[/mm]   bzw.
> [mm]\integral_{}^{}{\bruch{1}{3- 4x^2} dx}[/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de