www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Bruchgleichungen
Bruchgleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchgleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Mo 28.11.2011
Autor: lady112

Aufgabe
x+8   +   x+2    =  1
3x+3     2x+2

Hallo ihr Lieben,
ich habe die gleichung mit 6(x+1) erweitert und die beiden nenner in der aufgabe in 3(x+1) und 2(x+1) umgeformt.
dann erhalte ich nach dem kürzen
2(x+8) + 3(x+2)  =  1
2x + 16 + 3x + 6  =  1
5x + 22  =  1       | -22
5x  =  -21         | /5
x  =  4,2

das ergebnis soll aber 16 sein !? könnt ihr mir sagen, wo mein denk- bzw rechenfehler ist?
danke schonmal und lg





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bruchgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Mo 28.11.2011
Autor: Steffi21

Hallo

die Idee mit 6(x+1) ist schon ok, es handelt sich dabei um den Hauptnenner, der 1. Bruch wird also mit 2, der 2. Bruch mit 3 erweitert

[mm] \bruch{2(x+8)}{6(x+1)}+\bruch{3(x+2)}{6(x+1)}=1 [/mm]

alles auf einen Bruchstrich

[mm] \bruch{2x+16+3x+6}{6(x+1)}=1 [/mm]

Gleichung mit 6(x+1) multiplizieren

2x+16+3x+6=6(x+1)

jetzt du, x=16 ist die korrekte Lösung

Steffi




Bezug
                
Bezug
Bruchgleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Mo 28.11.2011
Autor: lady112

aber ich kann doch, wenn ich den bruch mit 6(x+1) erweitere, kürzen.

$ [mm] \bruch{(x+8)*6(x+1)}{3(x+1)}+\bruch{(x+2)*6(x+1)}{2(x+1)}=1 [/mm] $
dann kürze ich die (x+1) überall weg und beim ersten die 6 und die 3 wird zu 2 und beim zweiten die 6 und 2 wird zu 3.
dann habe ich:
(x+8)*2  +  (x+2)*3   =   1   ???

bei deiner rechnung komme ich zwar auf 16, aber der weg ist mir nicht ganz schlüssig..
2x +16 + 3x + 6  =  6x + 6
5x + 16  =  6x   |-5x
x = 16

Bezug
                        
Bezug
Bruchgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Mo 28.11.2011
Autor: abakus


> aber ich kann doch, wenn ich den bruch mit 6(x+1)
> erweitere, kürzen.

ABER DU HAST DEN BRUCH NICHT MIT 6(x+1) ERWEITERT.
Du hast NUR die gesamte Linke Seite der Gleichung mit 6(x+1) multipliziert.
Damit veränderst du die Lösungsmenge der Gleichung.
Wenn schon, dann musst du beide Seiten der Gleichung (auch die 1 auf der rechten Seite) mit 6(x+1) multiplizieren.

Wenn du nur mit Erweitern weiterkommen willst, müsstest du den ersten Bruch IN ZÄHLER UND NENNER mit 2 multiplizieren und den zweiten Bruch in Zähler und Nenner mit 3 multiplizieren.
Gruß Abakus

>  
> [mm]\bruch{(x+8)*6(x+1)}{3(x+1)}+\bruch{(x+2)*6(x+1)}{2(x+1)}=1[/mm]
>  dann kürze ich die (x+1) überall weg und beim ersten die
> 6 und die 3 wird zu 2 und beim zweiten die 6 und 2 wird zu
> 3.
>  dann habe ich:
>  (x+8)*2  +  (x+2)*3   =   1   ???
>  
> bei deiner rechnung komme ich zwar auf 16, aber der weg ist
> mir nicht ganz schlüssig..
>  2x +16 + 3x + 6  =  6x + 6
>  5x + 16  =  6x   |-5x
>  x = 16


Bezug
                                
Bezug
Bruchgleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Mo 28.11.2011
Autor: lady112

man muss ja nicht gleich schreien...
jetzt seh ich meinen fehler auch, hab einfach die rechte seite der gleichung vergessen...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de