www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - Bruchmultipl. mit Variablen
Bruchmultipl. mit Variablen < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchmultipl. mit Variablen: Korrektur, Hilfe
Status: (Frage) beantwortet Status 
Datum: 15:05 Di 12.07.2011
Autor: Vokabulator

Aufgabe
[mm] \bruch{ac-bc}{a^2b-ab^2}*\bruch{ab}{a+b} [/mm]

Könnte mir bitte jemand den Rechenweg korrigieren?

Das Ergebis soll [mm] \bruch{c}{a+b} [/mm] sein.

Ich mache als erstes:

[mm] \bruch{ab(ac-bc)}{a+b(a^2b+ab^2)} [/mm]

Dann:

[mm] \bruch{a^2bc-ab^2c}{a^3b-a^2b^2+a^2b^2-ab^3} [/mm]

Dann:

[mm] \bruch{a^2bc-ab^2c}{a^3b-ab^3} [/mm]

Dann:

Würde dann da anfangen zu kürzen. Bin mir aber nicht sicher, ob das soweit okay is.

Vielen Dank schon mal!

        
Bezug
Bruchmultipl. mit Variablen: erst ausklammern
Status: (Antwort) fertig Status 
Datum: 15:11 Di 12.07.2011
Autor: Roadrunner

Hallo Vokabulator!


Du gehst hier verkehrt rum vor. Nicht erst ausmultiplizieren, um dann wieder kürzen zu wollen. Gleich weitestgehend ausklammern!


> Ich mache als erstes:
>  
> [mm]\bruch{ab(ac-bc)}{a+b(a^2b+ab^2)}[/mm]

[notok] Im Nenner fehlen Klammern! Und dann verdrehst Du schlagartig ein Vorzeichen.

[mm] $$\bruch{ab*(ac-bc)}{\red{(}a+b\red{)}*(a^2b \ \red{-} \ ab^2)}$$ [/mm]

Nun also erst ausklammern.

Im Zähler kann man $c_$ ausklammern, im Nenner aus der zweiten Klammer $a*b_$ .


Gruß vom
Roadrunner

Bezug
        
Bezug
Bruchmultipl. mit Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Di 12.07.2011
Autor: fred97


> [mm]\bruch{ac-bc}{a^2b-ab^2}*\bruch{ab}{a+b}[/mm]
>  Könnte mir bitte jemand den Rechenweg korrigieren?
>  
> Das Ergebis soll [mm]\bruch{c}{a+b}[/mm] sein.
>  
> Ich mache als erstes:
>  
> [mm]\bruch{ab(ac-bc)}{a+b(a^2b+ab^2)}[/mm]
>  
> Dann:
>  
> [mm]\bruch{a^2bc-ab^2c}{a^3b-a^2b^2+a^2b^2-ab^3}[/mm]
>  
> Dann:
>
> [mm]\bruch{a^2bc-ab^2c}{a^3b-ab^3}[/mm]
>  
> Dann:
>  
> Würde dann da anfangen zu kürzen. Bin mir aber nicht
> sicher, ob das soweit okay is.
>  
> Vielen Dank schon mal!

[mm]\bruch{ac-bc}{a^2b-ab^2}*\bruch{ab}{a+b}=\bruch{(a-b)c}{ab(a-b)}*\bruch{ab}{a+b}[/mm]= $ [mm] \bruch{c}{a+b} [/mm] $

FRED

Bezug
                
Bezug
Bruchmultipl. mit Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Di 12.07.2011
Autor: Vokabulator

Vielen Dank @ Fred und Roadrunner!

Nur noch kurz zum Kürzen

Ich kann dann ja bei

[mm] \bruch{(a-b)c}{ab(a-b)} [/mm] * [mm] \bruch{ab}{a+b} [/mm]

die (a-b) wegkürzen und dann die "ab": Ist es wichtig, dass man das kürzen von "ab" in einem zweiten Rechenschritt macht oder kann man theoretisch in einem Rechenschritt immer so viel machen, wie möglich?

Bezug
                        
Bezug
Bruchmultipl. mit Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Di 12.07.2011
Autor: schachuzipus

Hallo Vokabulator,


> Vielen Dank @ Fred und Roadrunner!
>  
> Nur noch kurz zum Kürzen
>  
> Ich kann dann ja bei
>  
> [mm]\bruch{(a-b)c}{ab(a-b)}[/mm] * [mm]\bruch{ab}{a+b}[/mm]
>  
> die (a-b) wegkürzen [ok] und dann die "ab": [ok] Ist es wichtig,
> dass man das kürzen von "ab" in einem zweiten
> Rechenschritt macht oder kann man theoretisch in einem
> Rechenschritt immer so viel machen, wie möglich?

Das ist egal, das "stückweise" Kürzen dient nur dazu, dass du nicht die Übersicht verlierst ;-)

Du kannst auch alles, was möglich ist, in einem Schritt kürzen (wenn erlaubt ...)

Gruß

schachuzipus


Bezug
                        
Bezug
Bruchmultipl. mit Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Di 12.07.2011
Autor: Al-Chwarizmi


> Nur noch kurz zum Kürzen
>  
> Ich kann dann ja bei
>  
> [mm]\bruch{(a-b)c}{ab(a-b)}[/mm] * [mm]\bruch{ab}{a+b}[/mm]
>  
> die (a-b) wegkürzen und dann die "ab": Ist es wichtig,
> dass man das kürzen von "ab" in einem zweiten
> Rechenschritt macht oder kann man theoretisch in einem
> Rechenschritt immer so viel machen, wie möglich?

"in einem Schritt so viel wie möglich machen" ist keineswegs
immer eine gute Idee, hier aber wohl nicht problematisch.

Wichtig wäre hier aber insbesondere noch, deutlich zu
machen, unter welchen Umständen das Kürzen nicht
möglich
ist, nämlich immer dann, wenn man dabei
mit Null kürzen würde. Im vorliegenden Beispiel also:

Falls a=0 oder b=0 oder a=b , ist der Term gar nicht definiert.
Auch a=-b kommt nicht in Frage.

LG   Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de