www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Bruchrechnen
Bruchrechnen < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchrechnen: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:07 So 30.09.2012
Autor: Laura1609

Aufgabe
Bruch ausrechnen:     [mm] 1-\bruch{x+y}{x-y} [/mm]

Guten Abend...Es wäre nett wenn mir jemand einen Tipp geben kann wie man diesen Bruch ausrechnet. Ich habe zwar die Lösung aber keine Idee wie ich diesen Bruch ausrechnen kann...die Lösung ist [mm] \bruch{-2y}{x-y}...Liebe [/mm] Grüße Laura (Ich habe diese Frage in keinem anderen Forum gestellt)

        
Bezug
Bruchrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 So 30.09.2012
Autor: MathePower

Hallo Laura1609,

> Bruch ausrechnen:     [mm]1-\bruch{x+y}{x-y}[/mm]
>  Guten Abend...Es wäre nett wenn mir jemand einen Tipp
> geben kann wie man diesen Bruch ausrechnet. Ich habe zwar
> die Lösung aber keine Idee wie ich diesen Bruch ausrechnen


Erweitere die 1 so, daß sie als Bruch den Nenner x-y hat.

[mm]1=\bruch{...}{x-y}[/mm]


> kann...die Lösung ist [mm]\bruch{-2y}{x-y}...Liebe[/mm] Grüße
> Laura (Ich habe diese Frage in keinem anderen Forum
> gestellt)


Gruss
MathePower

Bezug
                
Bezug
Bruchrechnen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:27 So 30.09.2012
Autor: Laura1609

Vielen Dank schon mal...aber irgendwie verstehe ich das immer noch nicht :( ich weis nicht wie ich die 1 erweitern kann oder soll ich einfach das x+y als x+y unter die 1 tun?

Bezug
                        
Bezug
Bruchrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 So 30.09.2012
Autor: Valerie20

Hi!

> Vielen Dank schon mal...aber irgendwie verstehe ich das
> immer noch nicht :( ich weis nicht wie ich die 1 erweitern
> kann oder soll ich einfach das x+y als x+y unter die 1 tun?

>

Du musst versuchen, einen gemeinsamen Hauptnenner zu finden.

Angenommen du hättest den Bruch:

[mm] $\frac{1}{3}-\frac{1}{5}$ [/mm]

Dann müsstest du hier auch zunächst einen gemeinsamen Nenner finden.

Allgemein sieht das so aus:

[mm] $\frac{a}{b}-\frac{c}{d}=\frac{a\cdot d - b\cdot c}{b \cdot d}$ [/mm]

Bei deinem Term funktioniert das nun genauso.

Valerie  


Bezug
                                
Bezug
Bruchrechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 So 30.09.2012
Autor: Laura1609

Merci...jetztz hat es geklappt und ich habe das so gerechnet [mm] \to \bruch{1}{1}-\bruch{x+y}{x-y} [/mm] und dann mit der Regel die du mir gegeben hast und da kam dann kam [mm] \bruch{x-y-x-y}{x-y} [/mm] raus und dann die Lösung [mm] \bruch{-2y}{x-y} [/mm] Vielen Dank...Grüße Laura

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de