Bruchrechnung < Klassen 5-7 < Schule < Mathe < Vorhilfe
|
Aufgabe | 1) Wie viele Viertel, Sechstel, Achtel sind [mm] \bruch{1}{2} [/mm] ?
2) Wie viele Sechstel, Neuntel sind [mm] \bruch{1}{3} [/mm] ?
3) Wie viele Achtel, Zwölftel sind [mm] \bruch{1}{4} [/mm] ?
4) Wie viele Zehntel, Zwanzigstel sind [mm] \bruch{1}{5}
[/mm]
5) Ergänze die unten stehenden Brüche: Beispiel [mm] \bruch{1}{2} [/mm] = [mm] \bruch{?}{12} [/mm] |
Hallo liebe "Matheraum" Gemeinde,
es ist mir zwar wirklich peinlich, aber ich kapiere die Aufgabe unseres kleinen nicht, der in der 6. Klasse ist.
Ich muss gestehen, ich war beim Bruchrechnen nie gut und leider liegt das alles schon sehr lange zurück.
So hoffe ich auf eure Hilfe mir das Vorgehen zu erklären
Ich freue mich auf eure Antworten und bedanke mich bereits jetzt sehr herzlich bei euch.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:17 Sa 20.01.2018 | Autor: | Infinit |
Hallo Stromberg,
hier geht es um das Erweitern von Brüchen und die x-tel, die jeweils angegeben sind, geben die Zahl im Nenner des Bruchs an.
Die dabei entstehende Gleichung ist unter 5) bereits angegeben.
Beispiel:
Wie viele Achtel sind 1/2?
Die zu lösende Gleichung lautet:
[mm] \bruch{1}{2}=\bruch{x}{8} [/mm]
Um diese Gleichung zu lösen, bringst Du den Nenner des Bruchs, in dem das x vorkommt, auf die andere Seite der Gleichung, also
[mm] \bruch{1 \cdot 8}{2}=x=4 [/mm]
Nach diesem Schema sind diese Aufgaben zu lösen.
Viele Grüße,
Infinit
|
|
|
|
|
Aufgabe | Angegebenes Beispiel: [mm] \bruch{1}{2} [/mm] = sind wieviele Achtel |
Wenn ich die Vorgehensweise korrekt verstanden habe sieht der Lösungsweg wie folgt aus:
Beispiel: [mm] \bruch{1}{2} [/mm] * 8 (Nenner des zu errechnenden Bruches)
= [mm] \bruch{8}{2} [/mm] = 4
Der Zähler des Bruches wäre somit 4 ; also [mm] \bruch{4}{8}
[/mm]
Schön das habe ich so verstanden
Beispiel zur Sicherheit:
[mm] \bruch{1}{3} [/mm] = [mm] \bruch{x}{9} [/mm] ?
[mm] \bruch{1}{3} [/mm] * 9 = [mm] \bruch{9}{3} [/mm] = 3
Der Zähler des Bruches wäre somit 3 ; also [mm] \bruch{3}{9}
[/mm]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:40 Sa 20.01.2018 | Autor: | Infinit |
Ja, das ist genau die Vorgehensweise bei diesen Aufgaben. Nicht allzu kompliziert, wenn man einmal weiss, wie man da ran gehen muss.
Viel Spaß beim Helfen wünscht
Infinit
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:41 Sa 20.01.2018 | Autor: | Fulla |
Hallo Stromberg,
ich möchte eine Alternative zu Infinits Antwort geben. Ich glaube nämlich nicht, dass die Aufgaben mit Hilfe von Gleichungen zu lösen sind...
Beispiel: Wie viele Sechstel sind [mm]\frac 12[/mm]?
Bzw. Wie muss ich den Bruch [mm]\frac 12[/mm] erweitern, dass im Nenner eine 6 steht?
Antwort: [mm]\frac{1\cdot \blue{3}}{2\cdot \red{3}}=\frac{\green{3}}{6}[/mm] Ich muss also mit 3 erweitern.
Beachte: es geht darum, die rot markierte Zahl zu finden. Die blaue Zahl muss Diesselbe sein, da wir ja Erweitern. Die grüne Zahl ist sozusagen die Antwort (Drei Sechstel sind ein Halb). Dass das jetzt auch eine 3 ist, liegt an der Aufgabenstellung. (Versuch mal "Wie viele Neuntel sind [mm]\frac 23[/mm]" zu lösen...)
Im Prinzip ist das natürlich genau das Gleiche wie in der Antwort von Infinit, aber je nach Schulart und Jahrgangsstufe ist es so vielleicht leichter zu verstehen, bzw. im Lehrplan sogar so vorgesehen.
Lieben Gruß,
Fulla
|
|
|
|
|
> Beispiel: Wie viele Sechstel sind [mm]\frac 12[/mm]?
> Bzw. Wie muss
> ich den Bruch [mm]\frac 12[/mm] erweitern, dass im Nenner eine 6
> steht?
> Antwort: [mm]\frac{1\cdot \blue{3}}{2\cdot \red{3}}=\frac{\green{3}}{6}[/mm]
> Ich muss also mit 3 erweitern.
Hallo,
ich möchte das Erweitern mit 3 noch kommentieren:
Was tun wir anschaulich?
Wir schneiden das Halbe (die halbe Pizza) in drei gleiche Teile.
Statt der Pizzahälfte haben wir nun drei kleinere Stücke, nämlich drei Sechstel, die zusammen genausoviel sind wie zuvor.
Tonpapier und Schere helfen vielen Kindern beim Verständnis!
LG Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:19 Sa 20.01.2018 | Autor: | Stromberg |
Vielen herzlichen Dank euch allen.
Wir haben es dank eurer Hilfe super verstanden und auch unser kleiner hat den Weg mit einem lauten "Ahaaaaa" kommentiert.
Vielen herzlichen Dank für eure hilfe>
|
|
|
|