www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Bruchrechnung
Bruchrechnung < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Di 01.04.2008
Autor: tedd

Aufgabe
Vereinfachen Sie soweit wie möglich:
[mm]\bruch{3xy+2x+3y+2}{3xy+2x-6y-4}[/mm]

Also ich studiere schon Elektrotechnik nur passt die Frage wohl eher hier rein (wenn nicht dann Entschuldigung) und schäme mich schon, dass ich so ne Niete in Mathe bin aber ich komme einfach nicht drauf.

Also zunächt kann ich was faktorisieren:
[mm]\bruch{3xy+2x+3y+2}{3xy+2x-6y-4}=\bruch{3y(x+1)+2(x+1)}{3y(x-1)+2(x-2)}[/mm]
jetzt weis ich das am ende
[mm]\bruch{x+1}{x-2}[/mm] rauskommt nur wie schaff ichs bis dahin?


        
Bezug
Bruchrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Di 01.04.2008
Autor: schachuzipus

Hallo tedd,

> Vereinfachen Sie soweit wie möglich:
>  [mm]\bruch{3xy+2x+3y+2}{3xy+2x-6y-4}[/mm]
>  Also ich studiere schon Elektrotechnik nur passt die Frage
> wohl eher hier rein (wenn nicht dann Entschuldigung) und
> schäme mich schon, dass ich so ne Niete in Mathe bin aber
> ich komme einfach nicht drauf.

nana ;-)

Du hast im Nenner beim Faktorisieren nen kleinen Felhler reingehauen:

Es ist [mm] $3xy+2x-6y-4=3y(x-\red{2})+2(x-2)$ [/mm]

Damit kannst du im Zähler mal $(x+1)$ ausklammern und im Nenner $(x-2)$

Dann sollte es klappen

>  
> Also zunächt kann ich was faktorisieren:
>  
> [mm]\bruch{3xy+2x+3y+2}{3xy+2x-6y-4}=\bruch{3y(x+1)+2(x+1)}{3y(x-1)+2(x-2)}[/mm]
>  jetzt weis ich das am ende
>  [mm]\bruch{x+1}{x-2}[/mm] rauskommt nur wie schaff ichs bis dahin?
>  


LG

schachuzipus

Bezug
                
Bezug
Bruchrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Di 01.04.2008
Autor: tedd

Ah stimmt...
Also habe ich
[mm]\bruch {3y(x+1)+2(x+1)}{3y(x-2)+2(x-2)}[/mm]

Die Frage scheint evtl. etwas "dumm" aber ich seh nicht wie mich das auf [mm]\bruch{x+1}{x-2}[/mm] bringt. Vielleicht liegt es daran, dass ich diesen "In Summen kürzen nur die dummen Spruch" als Blockade hab?!
Wäre für Hilfe sehr dankbar :D

Ich könnte noch schreiben
[mm]\bruch {3y(x+1)}{3y(x-2)+2(x-2)}+\bruch {2(x+1)}{3y(x-2)+2(x-2)}[/mm] oder? aber da seh ich genauso wenig...


Bezug
                        
Bezug
Bruchrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Di 01.04.2008
Autor: schachuzipus

Hallo nochmal,

wie's weitergeht, habe ich doch oben schon geschrieben...


Dein Term stimmt nun [ok] und auch dein Spruch mit dem Kürzen... ;-)

Du hast in der Summe im Zähler in beiden Summanden $(x+1)$ und in der Summe im Nenner in beiden Summanden $(x-2)$ stehen.

Also klammere im Zähler $(x+1)$ aus und im Nenner $(x-2)$

Dann kommt aber das "AHA-Erlebnis" ;-)


LG

schachuzipus

Bezug
                                
Bezug
Bruchrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:37 Di 01.04.2008
Autor: tedd

AHA!
[mm]\bruch{(3y+2)*(x+1)}{(3y+2)*(x-2)}[/mm]

Hahaha, oh man...

Irgendwie hab ich in deiner ersten Antwort gar nicht richtig mitbekommen was du meintest :)
Jetzt habe ich es verstanden.
Vielen  Dank für die Hilfe und das AHA-Erlebnis! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de