www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Bruchterme umwandeln/kürzen
Bruchterme umwandeln/kürzen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchterme umwandeln/kürzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Mi 08.02.2006
Autor: hatschepsut

Aufgabe 1
  [mm] \bruch{3n²-n}{4n²} [/mm]

Aufgabe 2
  [mm] \bruch{n+1}{n} [/mm]

Hallo zusammen,

ich bin neu hier, deshalb verzeiht mir bitte etwaige Verstöße oder Fehler :-) und weist mich gerne darauf hin. :-).

Mein Problem ist, dass ich nicht genau weiss, wie ich Bruchterme kürzen kann bzw. was genau ich also tun muss, um zu kürzen.

Bei obiger Aufgabe hab ich einfach mal auf gut Glück durch n² gekürzt. Das ergibt dann bei mir:

[mm] \bruch{3n²}{n²} [/mm] = [mm] 3-\bruch{1}{n}durch [/mm] 4.

Als Lösung steht im Buch  [mm] \bruch{3}{4}- \bruch{1}{4n} [/mm]

Ist dass das gleiche?

Bei der zweiten Aufgabe kommt als Lösung einer Umwandlung raus: [mm] 1+\bruch{1}{n}. [/mm] Und hier kann ich nicht mal einen Lösungsweg sagen, da ich gar nicht weiss, was hier gemacht wurde? Durch n kann ja nicht gekürzt worden sein... ?!? Ich bin wirklich ratlos.

Mir geht es generell drum zu wissen, was ich tun muss. Jedesmal durch den höchsten Wert viell. kürzen? Ein bisschen Orientierungshilfe wäre super!

Ich danke Euch sehr für evtl. Antworten.

Grüßle,
hatschepsut

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.






        
Bezug
Bruchterme umwandeln/kürzen: Lösung
Status: (Antwort) fertig Status 
Datum: 13:06 Mi 08.02.2006
Autor: c.t.

Das Prinzip ist immer das gleiche:

1. Den Bruch auseinander ziehen
2. Kürzen

Zu Verdeutlichung nun zu deinen Aufgaben:

1. [mm] \bruch{3n^2-n}{4n^2}= \bruch{3n^2}{4n^2}-\bruch{n}{4n^2} [/mm]

Jetzt kommt das kürzen: bei den Term [mm] \bruch{3n^2}{4n^2} [/mm] kann man [mm] n^2 [/mm] kürzen; der Bruch wird zu [mm] \bruch{3}{4} [/mm]

Bei den Term [mm] -\bruch{n}{4n^2} [/mm] kürzt man jedoch nur n, da kein [mm] n^2 [/mm] im Zähler steht; man erhält also [mm] -\bruch{1}{4n} [/mm]

zusammengefasst erhält man dann das gewünschte Ergebnis


2.  [mm] \bruch{n+1}{n}= \bruch{n}{n}+ \bruch{1}{n} [/mm]

Beim ersten Term kann durch n gekürzt werden, man erhält 1. Beim zweiten Term kann nicht gekürzt werden, er bleibt so stehen

Zusammen hat man dann 1+ [mm] \bruch{1}{n} [/mm]


Wie gesagt, das Schema ist immer das gleiche, mit etwas Übung sieht man Brüchen immer sofort an, wie man sie kprzen kann.



Bezug
                
Bezug
Bruchterme umwandeln/kürzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Mi 08.02.2006
Autor: hatschepsut

Ahh! Danke Dir, Du hast mir sehr geholfen- auch durch Dein übersichtliches aufschlüsseln.  Auseinanderziehen war ein gutes Stichwort. Ich werde es jetzt mal so versuchen.

Danke.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de