www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Brüche und Kettenregel
Brüche und Kettenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brüche und Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Mi 04.07.2007
Autor: The-Saint

Aufgabe
[mm] \bruch{1}{(x^3-\wurzel{x})^2} [/mm]

Hallo ich brauche von euch die Hilfe wie ich von der oben genannten Gleichung wohl mit der Kettenregel die erste Ableitung gebildet bekomme ich danke euch im Vorraus.

Mfg Julian
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Brüche und Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Mi 04.07.2007
Autor: blascowitz

Guten Tach

also [mm] \bruch{1}{(x^3-\wurzel{x})^2} [/mm] = [mm] (x^3-\wurzel{x})^-2. [/mm] Dass kannst du jetzt nach der Regel für die Potenzableitungen ableiten. Das ergebnis ist dann
- [mm] \bruch{6\wurzel[2]{x^5}-1}{\wurzel{x}(x^3-\wurzel{x})^3} [/mm] . Bitte noch einmal selber nachrechnen. Danke

Schönen Tach noch

Bezug
                
Bezug
Brüche und Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Mi 04.07.2007
Autor: The-Saint

Erstmal danke für deine schnelle Antwort.

Aber das Ergebnis war mir schon bekann meine Frage ist daher, wie ich auf dieses Ergebnis komme, also bräuchte ich am besten um das nach zu vollziehen die passende Regel und den Lösungsweg.

Danke nocheinmal für eure Mühen.

Bezug
                        
Bezug
Brüche und Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Mi 04.07.2007
Autor: M.Rex

Hallo

Du hast:

[mm] f(x)=(\green{x³-\wurzel{x}})^{\red{-2}} [/mm]

Und das leitest du per Kettenregel ab.

[mm] f'(x)=\red{-2}(x³-\wurzel{x})^{(\red{-2}-1)}*\green{(3x²-\bruch{1}{2\wurzel{x}})} [/mm]

Das grüne stammt von der inneren Ableitung, das rote von der äußeren.

Wenn du das jetzt zusammenfasst, solltest du auf dein Ergebnis kommen.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de