www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - CRR Modell: American Put
CRR Modell: American Put < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

CRR Modell: American Put: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:37 Do 21.03.2013
Autor: Uebungistalles

Aufgabe
Man betrachte das CRR Modell. Sei U=2 D=1  r=0.5
Man bestimme den arbitragefreien Preis in t=0 des American Put, wobei unser Strike= 3 ist und Expiration Time ist 2.

Zuerst malt man sich ja den Baum auf. Unser p bestimmt sich durch die Formel [mm] p=\bruch{1+r-D}{U-D}, [/mm] soweit so gut. Jetzt führt man ja Rückwärtsindunktion durch und dort ist die Vorlesung eher ungenau.
Zuerst bestimmen wir den American Put in T=2.

Ich schreibe es mal auf für die Pfade UU=4 und UD=2.

Dann berechnen wir das Maximum von [mm] max({\bruch{(3-U)^{+}}{1+r},p*{(3-UU)^{+}}*(1+r)^{-2}}+(1-p)(3-DD)^{+}{1+r)^{-2}}) [/mm]

Stimmt das soweit? Speziell interessiert mich ob die Diskontierungsfaktoren dort auch hin müssen.

Danke für eure Mühen.

Ich habe die Frage nur in diesem Forum gestellt.

        
Bezug
CRR Modell: American Put: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Fr 22.03.2013
Autor: Staffan

Hallo,


> Man betrachte das CRR Modell. Sei U=2 D=1  r=0.5
>  Man bestimme den arbitragefreien Preis in t=0 des American
> Put, wobei unser Strike= 3 ist und Expiration Time ist 2.

ich kann nur einige Fragen stellen, da ich die Angaben nicht überall verstehe. Es wundert mich etwas, daß der (aktuelle) Kurs des Underlying nicht genannt ist, weil ich damit und D zw. U den Wert bei T=2 und damit den Wert der Option zu diesen Zeitpunkt ermitteln kann.



>  Zuerst malt man sich ja den Baum auf. Unser p bestimmt
> sich durch die Formel [mm]p=\bruch{1+r-D}{U-D},[/mm] soweit so gut.
> Jetzt führt man ja Rückwärtsindunktion durch und dort
> ist die Vorlesung eher ungenau.
>  Zuerst bestimmen wir den American Put in T=2.
>  
> Ich schreibe es mal auf für die Pfade UU=4 und UD=2.

>
Daß UU=4 ist, verstehe ich, nicht aber UD=2, denn hier steigt der Kurs des Underlying um 2 und fällt dann um 1.


  

> Dann berechnen wir das Maximum von
> [mm]max({\bruch{(3-U)^{+}}{1+r},p*{(3-UU)^{+}}*(1+r)^{-2}}+(1-p)(3-DD)^{+}{1+r)^{-2}})[/mm]
>

Das Maximum für einen Put ist doch immer nur der Strikeprice, da nur dann die Ausübung interessant ist. Auf welchen Zeitpunkt soll das von Dir genannte Maximum abstellen? Wenn es T=2 ist, gäbe es doch keine Diskontierung? Wenn der Wert heute gemeint ist, weshalb nennst Du dann unterschiedliche Diskontierungen bei der ersten und der zweiten Größe?
Soll der Wert für T=0 berechnet werden, wäre die Diskontierung im rechten Teil der Klammer zwar richtig; zu berücksichtigen ist aber noch, daß p bzw. 1-p entsprechend den Baumknoten zugeordnet werden muß. Allerdings ist mir auch hier die Verwendung von DD bzw. UU nicht klar.


> Stimmt das soweit? Speziell interessiert mich ob die
> Diskontierungsfaktoren dort auch hin müssen.
>  
> Danke für eure Mühen.
>  
> Ich habe die Frage nur in diesem Forum gestellt.

Das Ganze gilt für einen europäischen Put, was aber zunächst auch für den amerikanischen heranziehen ist.

Gruß
Staffan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de