www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - C[s,b] kein Banachraum?
C[s,b] kein Banachraum? < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

C[s,b] kein Banachraum?: Beweis,Erklärung
Status: (Frage) beantwortet Status 
Datum: 11:03 Fr 21.01.2011
Autor: Balendilin

Es geht um den Raum

[mm] C[a,b]=\{f: [a,b]\rightarrow \IR | f stetig\} [/mm] mit der Supremumsnorm [mm] ||f||_{\infty}=\sup|f(x)| [/mm]

Ich weiß eigentlich, dass dieser Raum ein Banachraum ist, aber folgendes Beispiel irritiert mich:

Sei [a,b]=[0,1] und [mm] (f_n) [/mm] eine Funktionenfolge in C[a,b] gegeben durch:

[mm] f_n(x)=\begin{cases} n-n^2x & \mbox{fuer } x\in [0,\frac{1}{n}] \\ 0 & \mbox{sonst } \end{cases} [/mm]

(das zwischen 0 und [mm] \frac{1}{n} [/mm] eine Gerade mit y-Achsenabschnitt n und danach konstant 0)
Diese Funktionenfolge ist für jedes n stetig und beschränkt. Aber die Grenzfunktion ist es nicht, denn die Grenzfunktion wäre:

[mm] f(x)=\begin{cases} \infty& \mbox{fuer } x=0 \\ 0 & \mbox{sonst } \end{cases} [/mm]




Wenn dieses Beispiel doof ist, kann ich  mir als Funktionenfolge auch nehmen:

[mm] f_n(x)=\begin{cases} 1-nx & \mbox{fuer } x\in [0,\frac{1}{n}] \\ 0 & \mbox{sonst } \end{cases} [/mm]

Das ist im Grunde das selbe, nur dass der y-Achsenabschnitt nicht nach oben abhaut, also meine Grenzfunktion beschränkt wäre. Aber auch hier wäre meine Grenzfunktion nicht stetig.


Das würde also bedeuten, dass mein Raum kein Banachraum wäre. Aber das stimmt ja irgendwie nicht.
Kann mir jemand sagen, wo der Fehler steckt?

        
Bezug
C[s,b] kein Banachraum?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Fr 21.01.2011
Autor: felixf

Moin!

> Es geht um den Raum
>
> [mm]C[a,b]=\{f: [a,b]\rightarrow \IR | f stetig\}[/mm] mit der
> Supremumsnorm [mm]||f||_{\infty}=\sup|f(x)|[/mm]
>  
> Ich weiß eigentlich, dass dieser Raum ein Banachraum ist,
> aber folgendes Beispiel irritiert mich:
>  
> Sei [a,b]=[0,1] und [mm](f_n)[/mm] eine Funktionenfolge in C[a,b]
> gegeben durch:
>  
> [mm]f_n(x)=\begin{cases} n-n^2x & \mbox{fuer } x\in [0,\frac{1}{n}] \\ 0 & \mbox{sonst } \end{cases}[/mm]
>  
> (das zwischen 0 und [mm]\frac{1}{n}[/mm] eine Gerade mit
> y-Achsenabschnitt n und danach konstant 0)
>  Diese Funktionenfolge ist für jedes n stetig und
> beschränkt. Aber die Grenzfunktion ist es nicht, denn die
> Grenzfunktion wäre:
>  
> [mm]f(x)=\begin{cases} \infty& \mbox{fuer } x=0 \\ 0 & \mbox{sonst } \end{cases}[/mm]
>  
>
>
>
> Wenn dieses Beispiel doof ist, kann ich  mir als
> Funktionenfolge auch nehmen:
>  
> [mm]f_n(x)=\begin{cases} 1-nx & \mbox{fuer } x\in [0,\frac{1}{n}] \\ 0 & \mbox{sonst } \end{cases}[/mm]
>  
> Das ist im Grunde das selbe, nur dass der y-Achsenabschnitt
> nicht nach oben abhaut, also meine Grenzfunktion
> beschränkt wäre. Aber auch hier wäre meine Grenzfunktion
> nicht stetig.
>  
>
> Das würde also bedeuten, dass mein Raum kein Banachraum
> wäre. Aber das stimmt ja irgendwie nicht.
> Kann mir jemand sagen, wo der Fehler steckt?

Beides sind keine Cauchy-Folgen bzgl. der Supremumsnorm.

LG Felix



Bezug
        
Bezug
C[s,b] kein Banachraum?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Fr 21.01.2011
Autor: fred97

Konvergenz bezügl. der Supremumsnorm  ist gleichbedeutend mit gleichmäßiger Konvergenz.

In Deinen Beispielen konvergieren die jeweiligen Funktionenfolgen nicht glm. !!

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de