www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Cantor-Menge
Cantor-Menge < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cantor-Menge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:03 Di 27.10.2015
Autor: impliziteFunktion

Aufgabe
Zeigen Sie:

Die Cantor-Menge ist

a) kompakt

b) eine Nullmenge

c) überabzählbar


Hallo,

ich beschäftige mich gerade mit dieser Aufgabe.

Die Cantor-Menge ist so definiert, dass [mm] $U_1=(\tfrac{1}{3},\tfrac{2}{3})$ [/mm] und [mm] $U_{n+1}=\{\tfrac{x}{3},\tfrac{x+2}{3}\colon x\in U_n\}$ [/mm] für [mm] $n\geq [/mm] 1$

Dann wird im n-ten Schritt die Menge [mm] $U_n$ [/mm] entfernt und die verbleibende Cantor-Menge ist

[mm] $C:=[0,1]\setminus\bigcup_{n=1}^{\infty} U_n$ [/mm]

erst einmal nur zu c)

Die Teile a) und b) sollten recht einfach sein.
Als Hinweis ist gegeben, dass man die Menge aller Folgen von Nullen und Einsen [mm] $\{0,1\}^{\mathbb{N}}$ [/mm] betrachten soll.
Man soll zeigen, dass diese Menge überabzählbar ist und injektiv durch die Abbildung

[mm] $\{0,1\}^{\mathbb{N}}\to [/mm] [0,1]$

[mm] $A\mapsto \sum_{n=0}^{\infty} \frac{2x_n}{3^n}$ [/mm]

auf die Cantor-Menge abgebildet wird.

Zu zeigen, dass [mm] ${0,1}^{\mathbb{N}}$ [/mm] überabzählbar ist, sollte nicht so schwer sein.
Es sollte analog zum Beweis funktionieren, dass die reellen Zahlen überabzählbar sind.

Denn angenommen man könnte alle 0-1-Folgen aufschreiben, die Menge also abzählbar ist, wobei die zweite Folge sich an erster Stelle von der ersten Folge unterscheidet, die dritte Folge sich an zweiter Stelle von der zweiten Folge unterscheidet usw., so finde ich auf der Diagonalen eine Folge, welche ich noch nicht in meiner Liste habe.
Denn sie stimmt mit der ersten Folge nicht überein, da sie sich an erster Stelle von ihr unterscheidet, und auch mit der n-ten Folge nicht überein, da sie sich ebenso an der n-ten Stelle unterscheidet.

Erinnere ich mich richtig, so hatte man so die Überabzählbarkeit der reellen Zahlen gezeigt, wobei man da noch aufpassen musste, dass man keine 9er-Periode hat.

Vielen Dank im voraus.

        
Bezug
Cantor-Menge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 29.10.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de