www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Cauchy-Folge
Cauchy-Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Di 28.05.2013
Autor: kRAITOS

Aufgabe
Sei [mm] (x_n) [/mm] eine Folge in [mm] \IR [/mm] mit [mm] |x_n [/mm] - [mm] x_n_+_1| \le q^n [/mm]
[mm] \forall [/mm] n [mm] \in \IN, [/mm] wobei [mm] 0\le [/mm] q [mm] \le [/mm] 1.
Für welche q ist [mm] (x_n) [/mm] eine Cauchy-Folge?

Hinweis: Sie dürfen verwenden, dass

[mm] \summe_{k=0}^{n} q^k [/mm] = [mm] \bruch{1-q^n+1}{1-q} [/mm] für 0<q<1 gilt.

Hallo.

Ich würde hier als Ansatz

0< [mm] |x_n [/mm] - [mm] x_n_+_1| \le \summe_{k=0}^{n} q^k [/mm] = [mm] \bruch{1-q^n+1}{1-q} [/mm] <1

verwenden. Wäre das richtig?

        
Bezug
Cauchy-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Di 28.05.2013
Autor: angela.h.b.


> Sei [mm](x_n)[/mm] eine Folge in [mm]\IR[/mm] mit [mm]|x_n[/mm] - [mm]x_n_+_1| \le q^n[/mm]
> [mm]\forall[/mm] n [mm]\in \IN,[/mm] wobei [mm]0\le[/mm] q [mm]\le[/mm] 1.
> Für welche q ist [mm](x_n)[/mm] eine Cauchy-Folge?

>

> Hinweis: Sie dürfen verwenden, dass

>

> [mm]\summe_{k=0}^{n} q^k[/mm] = [mm]\bruch{1-q^{n+1}}{1-q}[/mm] für 0<q<1
> gilt.
> Hallo.

>

> Ich würde hier als Ansatz

>

> 0< [mm]|x_n[/mm] - [mm]x_n_+_1| \le \summe_{k=0}^{n} q^k[/mm] =
> [mm]\bruch{1-q^{n+1}}{1-q}[/mm] <1

>

> verwenden.

Hallo,

ich weiß irgendwie immer nicht, was mit "Ansatz" gemeint ist...
Bei "Ansatz" denke ich an Sauerteig oder Bowle - und an Aufgaben, denen ein bestimmtes Rechenverfahren zugrunde liegt.

Wäre der Beginn der Bemühungen nicht erstmal die Klärung des Begriffes "Cauchy-Folge"?
Welches Ergebnis für q vermutest Du?

Was bezweckst Du mit dem "Ansatz"? Worauf soll das hinauslaufen?

Die Abschätzung "<1" ist mir nicht klar. Die Summe ist sicher nicht grundsätzlich kleiner als 1.

Möglicherweise willst Du aber auch herausfinden, für welche q sie <1 ist. Warum?

LG Angela


> Wäre das richtig?


Bezug
        
Bezug
Cauchy-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Di 28.05.2013
Autor: fred97


> Sei [mm](x_n)[/mm] eine Folge in [mm]\IR[/mm] mit [mm]|x_n[/mm] - [mm]x_n_+_1| \le q^n[/mm]
> [mm]\forall[/mm] n [mm]\in \IN,[/mm] wobei [mm]0\le[/mm] q [mm]\le[/mm] 1.
>  Für welche q ist [mm](x_n)[/mm] eine Cauchy-Folge?
>  
> Hinweis: Sie dürfen verwenden, dass
>  
> [mm]\summe_{k=0}^{n} q^k[/mm] = [mm]\bruch{1-q^n+1}{1-q}[/mm] für 0<q<1
> gilt.
>  Hallo.
>
> Ich würde hier als Ansatz
>
> 0< [mm]|x_n[/mm] - [mm]x_n_+_1| \le \summe_{k=0}^{n} q^k[/mm] =
> [mm]\bruch{1-q^n+1}{1-q}[/mm] <1
>  
> verwenden. Wäre das richtig?

Beide "<"  sind i.a. falsch !

Fall 1: q=1. In diesem Fall wird [mm] (x_n) [/mm] i.a. keine Cauchyfolge sein. Finde ein Beispiel !


Fall 2. q<1. Zeige:

   für n ,k  [mm] \in \IN [/mm] ist

   [mm] |x_{n+k}-x_n| \le q^{n+k-1}+...+q^n=q^n(1+q+...+q^{k-1})=q^n*\bruch{1-q^k}{1-q} \le q^n*\bruch{1}{1-q}. [/mm]

FRED


Bezug
        
Bezug
Cauchy-Folge: zur Notation
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:36 Di 28.05.2013
Autor: reverend

Hallo Kraitos,

Exponenten gehören in geschweifte Klammern, wenn sie mehr als ein einzelnes Zeichen umfassen:

> Sei [mm](x_n)[/mm] eine Folge in [mm]\IR[/mm] mit [mm]|x_n[/mm] - [mm]x_n_+_1| \le q^n[/mm]
> [mm]\forall[/mm] n [mm]\in \IN,[/mm] wobei [mm]0\le[/mm] q [mm]\le[/mm] 1.
> Für welche q ist [mm](x_n)[/mm] eine Cauchy-Folge?

>

> Hinweis: Sie dürfen verwenden, dass

>

> [mm]\summe_{k=0}^{n} q^k[/mm] = [mm]\bruch{1-q^n+1}{1-q}[/mm] für 0<q<1
> gilt.

Du meinst [mm] \bruch{1-q^{n+1}}{1-q}. [/mm] Klick mal auf die Formel.

> Hallo.

>

> Ich würde hier als Ansatz

>

> 0< [mm]|x_n[/mm] - [mm]x_n_+_1| \le \summe_{k=0}^{n} q^k[/mm] =
> [mm]\bruch{1-q^n+1}{1-q}[/mm] <1

Hier natürlich auch wie oben: der Exponent lautet n+1, hier geschrieben q^{n+1}.

> verwenden. Wäre das richtig?

Links steht der Abstand zweier Folgenglieder der zu untersuchenden Folge, rechts die Summenformel einer Reihe. Das sieht nicht so vielversprechend aus...

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de