www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Cauchy-Integralformel
Cauchy-Integralformel < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Integralformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Mi 23.05.2012
Autor: couldbeworse

Aufgabe
Berechnen Sie folgende Integrale mit Hilfe der Cauchy-Integralformel
a) [mm]\int_{\gamma} \bruch{e^z}{z^2(z^2-4)} dz [/mm] entlang der Einheitskreisscheibe


Hallo,

ich hab mal wieder ein Problem mit Funktionentheorie....ich weiß, daß ich das Integral so zerlegen muß, das ich eine auf [mm]B_1(0)[/mm] holomorphe Funktion [mm]f(z)[/mm] bekomme, um dann das Integral in der Form [mm]\bruch{1}{2\pi i}f(z)=\int_{\gamma} \bruch {f(\zeta)}{\zeta-z}, d\zeta[/mm] schreiben zu können. 2 und -2 liegen nicht im Inneren meines Integrationsweges, das ist ja schon einmal ganz gut. Wenn da jetzt im Nenner ein [mm]z[/mm] statt einem [mm]z^2[/mm] stünde käme ich mit  [mm]f(z)=\bruch{e^z}{z^2-4}[/mm] wunderbar zurecht. Wahrscheinlich läßt sich das Problem ganz einfach lösen, aber ich komme leider nicht darauf. partialbruchzerlegung hab ich probiert - klappt nicht. Weiß vielleicht jemand weiter?

Grüße couldbeworse

        
Bezug
Cauchy-Integralformel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Mi 23.05.2012
Autor: donquijote


> Berechnen Sie folgende Integrale mit Hilfe der
> Cauchy-Integralformel
>  a) [mm]\int_{\gamma} \bruch{e^z}{z^2(z^2-4)} dz[/mm] entlang der
> Einheitskreisscheibe
>  
> Hallo,
>  
> ich hab mal wieder ein Problem mit Funktionentheorie....ich
> weiß, daß ich das Integral so zerlegen muß, das ich eine
> auf [mm]B_1(0)[/mm] holomorphe Funktion [mm]f(z)[/mm] bekomme, um dann das
> Integral in der Form [mm]\bruch{1}{2\pi i}f(z)=\int_{\gamma} \bruch {f(\zeta)}{\zeta-z}, d\zeta[/mm]

Wenn du es so rum schreibst, muss das [mm] 2\pi [/mm] i im Zähler stehen.
Zusätzlich gilt noch für die n-te Ableitung
[mm] f^{(n)}(z)=\frac{n!}{2\pi i}\int_{\gamma} \bruch {f(\zeta)}{(\zeta-z)^{n+1}}d\zeta [/mm]
Damit lässt sich die Aufgabe lösen.

> schreiben zu können. 2 und -2 liegen nicht im Inneren
> meines Integrationsweges, das ist ja schon einmal ganz gut.
> Wenn da jetzt im Nenner ein [mm]z[/mm] statt einem [mm]z^2[/mm] stünde käme
> ich mit  [mm]f(z)=\bruch{e^z}{z^2-4}[/mm] wunderbar zurecht.
> Wahrscheinlich läßt sich das Problem ganz einfach lösen,
> aber ich komme leider nicht darauf. partialbruchzerlegung
> hab ich probiert - klappt nicht. Weiß vielleicht jemand
> weiter?
>  
> Grüße couldbeworse

Bezug
                
Bezug
Cauchy-Integralformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Mi 23.05.2012
Autor: couldbeworse

Hallo!
>  Zusätzlich gilt noch für die n-te Ableitung
>  [mm]f^{(n)}(z)=\frac{n!}{2\pi i}\int_{\gamma} \bruch {f(\zeta)}{(\zeta-z)^{n+1}}d\zeta[/mm]
>  

Aha, dann habe ich [mm]f'(0)=\frac{1}{2\pi i}\int_{\gamma} \bruch {\frac{e^z}{(z^2-4)}}{(z-0)^{2}}dz[/mm] mit [mm]f(z)=\frac{e^z}{(z^2-4)}[/mm] holomorph auf der Einheitskreisscheibe. Also [mm]f'(z)=\frac{e^z(z^2-4)-e^z2z}{(z^2-4)^2}[/mm] und damit [mm]\int_{\gamma}\frac{e^z}{z^2(z^2-4)}dz=2\pi i f'(0)=\frac{-\pi i}{2}[/mm]. Stimmt das so?



Bezug
                        
Bezug
Cauchy-Integralformel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 Mi 23.05.2012
Autor: donquijote


> Hallo!
>  >  Zusätzlich gilt noch für die n-te Ableitung
>  >  [mm]f^{(n)}(z)=\frac{n!}{2\pi i}\int_{\gamma} \bruch {f(\zeta)}{(\zeta-z)^{n+1}}d\zeta[/mm]
>  
> >  

> Aha, dann habe ich [mm]f'(0)=\frac{1}{2\pi i}\int_{\gamma} \bruch {\frac{e^z}{(z^2-4)}}{(z-0)^{2}}dz[/mm]
> mit [mm]f(z)=\frac{e^z}{(z^2-4)}[/mm] holomorph auf der
> Einheitskreisscheibe. Also
> [mm]f'(z)=\frac{e^z(z^2-4)-e^z2z}{(z^2-4)^2}[/mm] und damit
> [mm]\int_{\gamma}\frac{e^z}{z^2(z^2-4)}dz=2\pi i f'(0)=\frac{-\pi i}{2}[/mm].
> Stimmt das so?
>  
>  

ja, sieht gut aus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de