www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Cauchy Hauptwert
Cauchy Hauptwert < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy Hauptwert: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:53 Mi 24.03.2010
Autor: chipbit

Aufgabe
[mm] \integral_{-1}^{2}{\bruch{1}{x} dx} [/mm]

Hallo Leute,
also, das gegebene Integral ist jetzt keines aus einer speziellen Aufgabe. Wir hatten mal ein ähnliches durchexerziert und deshalb habe ich das jetzt einfach mal gewählt... mein Problem ist an sich überhaupt das Thema Cauchyscher Hauptwert. Kann mir jemand vielleicht in möglichst einfacher Form (ja, für Doofe um genau zu sein) erklären was das eigentlich ist und wann bzw. wozu ich den brauche. Und dann wäre natürlich auch die Frage, gibt es da ein Schema f was man abarbeiten kann, so dass man den bestimmt? Ich schnalls irgendwie einfach nich. Für eure Hilfe wäre ich sehr dankbar.
LG, chip

        
Bezug
Cauchy Hauptwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mi 24.03.2010
Autor: Gonozal_IX

Hiho,

also "einfach" erklärt machst du nun folgendes:

Du trennst das Integral an der kritischen Stelle auf, die ist hier 0, also:

[mm]\integral_{-1}^{2}{\bruch{1}{x} dx}[/mm]

$= [mm] \integral_{-1}^{0}{\bruch{1}{x} dx} [/mm] + [mm] \integral_{0}^{2}{\bruch{1}{x} dx}$ [/mm]


Nun ist das Integral ja an 0 nicht definiert, also schauen wir uns die Teilintegrale ein kleines Stückchen links und rechts davon an und lassen diese "kleine Stückchen", gegen 0 laufen, also:

$= [mm] \lim_{h\to 0+}\integral_{-1}^{-h}{\bruch{1}{x} dx} [/mm] + [mm] \integral_{+h}^{2}{\bruch{1}{x} dx}$ [/mm]

Da nun [mm] $h\not= [/mm] 0$ gilt, können wir die Integrale berechnen:

$= [mm] \lim_{h\to 0+}( [\ln{|x|}]_{-1}^{-h} [/mm] + [mm] [\ln{|x|}]_{h}^{2})$ [/mm]

$= [mm] \lim_{h\to 0+}(\ln{h} [/mm] - [mm] \ln{1} [/mm] + [mm] \ln{2} [/mm] - [mm] \ln{h})$ [/mm]

$=  [mm] \lim_{h\to 0+} \ln{2} [/mm] = [mm] \ln{2}$ [/mm]

MFG,
Gono.



Bezug
                
Bezug
Cauchy Hauptwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Mi 24.03.2010
Autor: chipbit

Hey, vielen Dank. Das hat mir schon sehr weiter geholfen.
Also macht man das quasi immer, wenn man ein Integral hat was dann so eine kritische Stelle hat?
Lg, Chip

Bezug
                        
Bezug
Cauchy Hauptwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Mi 24.03.2010
Autor: fred97

Schau mal hier:

http://www.unibw.de/rz/dokumente/public/getFILE?fid=bs_945973

FRED

Bezug
                                
Bezug
Cauchy Hauptwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:37 Mi 24.03.2010
Autor: chipbit

Ah, okay, vielen Dank!
Das hat den Rest dann auch geklärt. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de