www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Cauchy Integralformel
Cauchy Integralformel < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy Integralformel: Berechnung eines Integrales
Status: (Frage) beantwortet Status 
Datum: 16:18 Do 16.05.2013
Autor: Benjamin_hat_keinen_Nickname

Aufgabe
Sei [mm] \alpha [/mm] = 3exp(it). Berechne [mm] \int_\alpha \frac{cos(\pi z)}{z^2 - 1}dz. [/mm]

Die Aufgabe stammt aus Freitag, Busam - Funktionentheorie.
Meine "Lösung" lautet

[mm] \int_\alpha \frac{cos(\pi z)}{z^2 - 1} [/mm] dz = [mm] \int_\alpha \frac{cos(\pi z)}{(z+1)(z-1)} [/mm] dz

= [mm] \int_\alpha \frac{\frac{cos(\pi z)}{z+1}}{z - 1} [/mm] dz = [mm] 2\pi [/mm] i [mm] \frac{cos(\pi)}{1 + 1} [/mm] = [mm] -\pi [/mm] i,

aber im Lösungsteil des Buches steht, dass das Integral Null ist.
Das vorletzte Gleichheitszeichen ist die Cauchy Integralformel.

Kann mir jemand sagen wo mein Fehler ist?

Vielen Dank :)

        
Bezug
Cauchy Integralformel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Do 16.05.2013
Autor: Gonozal_IX

Hiho,

schau dir dein Integrationsgebiet mal an und deine Funktion $f(z) = [mm] \bruch{\cos(\pi z)}{z+1}$. [/mm]
Was muss für deine Funktion innerhalb des Integrationsgebiets gelten?

Gilt das?

MFG,
Gono.

Bezug
                
Bezug
Cauchy Integralformel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:04 Do 16.05.2013
Autor: Benjamin_hat_keinen_Nickname

Die Funktion f(z) = [mm] \frac{cos(\pi z)}{z+1} [/mm] hat an z = -1 eine Singularität.
Das wäre in Ordnung, wenn [mm] \lim_{z \rightarrow -1} [/mm] (z - (-1))f(z) = 0 wäre, es ist aber [mm] \lim_{z \rightarrow -1} [/mm] (z - (-1))f(z) = [mm] \lim_{z \rightarrow -1} \cos(\pi [/mm] z) = -1, und somit ist die Cauchysche Integralformel nicht anwendbar.

Das Integral verschwindet, da der Integrand überall ausser an den endlich vielen Stellen 1 und -1 holomorph ist, und wir über eine geschlossene Kurve integrieren die weder 1 noch -1 enthält.

Ist das so richtig? Vielen Dank!

Bezug
                        
Bezug
Cauchy Integralformel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 20.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Cauchy Integralformel: Antwort
Status: (Antwort) fertig Status 
Datum: 06:44 Fr 17.05.2013
Autor: fred97


> Sei [mm]\alpha[/mm] = 3exp(it).


Ich nehme an, es lautet: [mm]\alpha(t)[/mm] = 3exp(it), t [mm] \in [/mm] [0, 2 [mm] \pi] [/mm]


> Berechne [mm]\int_\alpha \frac{cos(\pi z)}{z^2 - 1}dz.[/mm]
>  
> Die Aufgabe stammt aus Freitag, Busam - Funktionentheorie.
>  Meine "Lösung" lautet
>  
> [mm]\int_\alpha \frac{cos(\pi z)}{z^2 - 1}[/mm] dz = [mm]\int_\alpha \frac{cos(\pi z)}{(z+1)(z-1)}[/mm]
> dz
>  
> = [mm]\int_\alpha \frac{\frac{cos(\pi z)}{z+1}}{z - 1}[/mm] dz =
> [mm]2\pi[/mm] i [mm]\frac{cos(\pi)}{1 + 1}[/mm] = [mm]-\pi[/mm] i,
>  
> aber im Lösungsteil des Buches steht, dass das Integral
> Null ist.
>  Das vorletzte Gleichheitszeichen ist die Cauchy
> Integralformel.
>  
> Kann mir jemand sagen wo mein Fehler ist?

Das hat Gono schon gemacht.



Sei [mm] f(z):=\frac{cos(\pi z)}{z^2 - 1} [/mm]

f hat in 1 und in -1 jeweils einen Pol der Ordnung 1.

Berechne das Residuum von f in 1 und das Residuum von f in -1 .


Beachte dabei:

Hat f in a eine Polstelle 1. Ordnung, so, gilt:  [mm] $Res_a [/mm] f = [mm] \lim_{z\rightarrow a} [/mm] (z-a)f(z)$

Jetzt kram den Residuensatz heraus.

FRED

>  
> Vielen Dank :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de